Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Deepseek Coder 33B Base - GGUF

Description

This repo contains GGUF format model files for DeepSeek's Deepseek Coder 33B Base.

These files were quantised using hardware kindly provided by Massed Compute.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplete list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.

Repositories available

Prompt template: None

{prompt}

Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
deepseek-coder-33b-base.Q2_K.gguf Q2_K 2 14.03 GB 16.53 GB smallest, significant quality loss - not recommended for most purposes
deepseek-coder-33b-base.Q3_K_S.gguf Q3_K_S 3 14.42 GB 16.92 GB very small, high quality loss
deepseek-coder-33b-base.Q3_K_M.gguf Q3_K_M 3 16.07 GB 18.57 GB very small, high quality loss
deepseek-coder-33b-base.Q3_K_L.gguf Q3_K_L 3 17.56 GB 20.06 GB small, substantial quality loss
deepseek-coder-33b-base.Q4_0.gguf Q4_0 4 18.82 GB 21.32 GB legacy; small, very high quality loss - prefer using Q3_K_M
deepseek-coder-33b-base.Q4_K_S.gguf Q4_K_S 4 18.89 GB 21.39 GB small, greater quality loss
deepseek-coder-33b-base.Q4_K_M.gguf Q4_K_M 4 19.94 GB 22.44 GB medium, balanced quality - recommended
deepseek-coder-33b-base.Q5_0.gguf Q5_0 5 22.96 GB 25.46 GB legacy; medium, balanced quality - prefer using Q4_K_M
deepseek-coder-33b-base.Q5_K_S.gguf Q5_K_S 5 22.96 GB 25.46 GB large, low quality loss - recommended
deepseek-coder-33b-base.Q5_K_M.gguf Q5_K_M 5 23.54 GB 26.04 GB large, very low quality loss - recommended
deepseek-coder-33b-base.Q6_K.gguf Q6_K 6 27.36 GB 29.86 GB very large, extremely low quality loss
deepseek-coder-33b-base.Q8_0.gguf Q8_0 8 35.43 GB 37.93 GB very large, extremely low quality loss - not recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/deepseek-coder-33B-base-GGUF and below it, a specific filename to download, such as: deepseek-coder-33b-base.Q4_K_M.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/deepseek-coder-33B-base-GGUF deepseek-coder-33b-base.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage

You can also download multiple files at once with a pattern:

huggingface-cli download TheBloke/deepseek-coder-33B-base-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/deepseek-coder-33B-base-GGUF deepseek-coder-33b-base.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d or later.

./main -ngl 32 -m deepseek-coder-33b-base.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 2048 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.

How to load this model in Python code, using ctransformers

First install the package

Run one of the following commands, according to your system:

# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers

Simple ctransformers example code

from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/deepseek-coder-33B-base-GGUF", model_file="deepseek-coder-33b-base.Q4_K_M.gguf", model_type="deepseek", gpu_layers=50)

print(llm("AI is going to"))

How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: DeepSeek's Deepseek Coder 33B Base

DeepSeek Coder

[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]


1. Introduction of Deepseek Coder

Deepseek Coder is composed of a series of code language models, each trained from scratch on 2T tokens, with a composition of 87% code and 13% natural language in both English and Chinese. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.

  • Massive Training Data: Trained from scratch on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.

  • Highly Flexible & Scalable: Offered in model sizes of 1.3B, 5.7B, 6.7B, and 33B, enabling users to choose the setup most suitable for their requirements.

  • Superior Model Performance: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.

  • Advanced Code Completion Capabilities: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.

2. Model Summary

deepseek-coder-33b-base is a 33B parameter model with Grouped-Query Attention trained on 2 trillion tokens.

3. How to Use

Here give some examples of how to use our model.

1)Code Completion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").cuda()
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

2)Code Insertion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True).cuda()
input_text = """<|fim▁begin|>def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
<|fim▁hole|>
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
inputs = tokenizer(input_text, return_tensors="pt").cuda()
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])

3)Repository Level Code Completion

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True).cuda()

input_text = """#utils.py
import torch
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score

def load_data():
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    # Standardize the data
    scaler = StandardScaler()
    X = scaler.fit_transform(X)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

    # Convert numpy data to PyTorch tensors
    X_train = torch.tensor(X_train, dtype=torch.float32)
    X_test = torch.tensor(X_test, dtype=torch.float32)
    y_train = torch.tensor(y_train, dtype=torch.int64)
    y_test = torch.tensor(y_test, dtype=torch.int64)

    return X_train, X_test, y_train, y_test

def evaluate_predictions(y_test, y_pred):
    return accuracy_score(y_test, y_pred)
#model.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

class IrisClassifier(nn.Module):
    def __init__(self):
        super(IrisClassifier, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(4, 16),
            nn.ReLU(),
            nn.Linear(16, 3)
        )

    def forward(self, x):
        return self.fc(x)

    def train_model(self, X_train, y_train, epochs, lr, batch_size):
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(self.parameters(), lr=lr)

        # Create DataLoader for batches
        dataset = TensorDataset(X_train, y_train)
        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

        for epoch in range(epochs):
            for batch_X, batch_y in dataloader:
                optimizer.zero_grad()
                outputs = self(batch_X)
                loss = criterion(outputs, batch_y)
                loss.backward()
                optimizer.step()

    def predict(self, X_test):
        with torch.no_grad():
            outputs = self(X_test)
            _, predicted = outputs.max(1)
        return predicted.numpy()
#main.py
from utils import load_data, evaluate_predictions
from model import IrisClassifier as Classifier

def main():
    # Model training and evaluation
"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=140)
print(tokenizer.decode(outputs[0]))

4. License

This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.

See the LICENSE-MODEL for more details.

5. Contact

If you have any questions, please raise an issue or contact us at [email protected].

Downloads last month
1,535
GGUF
Model size
33.3B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/deepseek-coder-33B-base-GGUF

Quantized
(4)
this model