TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Nous Hermes Llama 2 13B - AWQ
- Model creator: NousResearch
- Original model: Nous Hermes Llama 2 13B
Description
This repo contains AWQ model files for Nous Research's Nous Hermes Llama 2 13B.
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
It is also now supported by continuous batching server vLLM, allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Alpaca
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
Licensing
The creator of the source model has listed its license as ['mit']
, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: Nous Research's Nous Hermes Llama 2 13B.
Provided files and AWQ parameters
For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
Models are released as sharded safetensors files.
Serving this model from vLLM
Documentation on installing and using vLLM can be found here.
- When using vLLM as a server, pass the
--quantization awq
parameter, for example:
python3 python -m vllm.entrypoints.api_server --model TheBloke/Nous-Hermes-Llama2-AWQ --quantization awq
When using vLLM from Python code, pass the quantization=awq
parameter, for example:
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="TheBloke/Nous-Hermes-Llama2-AWQ", quantization="awq")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
How to use this AWQ model from Python code
Install the necessary packages
Requires: AutoAWQ 0.0.2 or later
pip3 install autoawq
If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
You can then try the following example code
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_name_or_path = "TheBloke/Nous-Hermes-Llama2-AWQ"
# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
'''
print("\n\n*** Generate:")
tokens = tokenizer(
prompt_template,
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
max_new_tokens=512
)
print("Output: ", tokenizer.decode(generation_output[0]))
# Inference can also be done using transformers' pipeline
from transformers import pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with AutoAWQ, and vLLM.
Huggingface Text Generation Inference (TGI) is not yet compatible with AWQ, but a PR is open which should bring support soon: TGI PR #781.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Nous Research's Nous Hermes Llama 2 13B
Model Card: Nous-Hermes-Llama2-13b
Compute provided by our project sponsor Redmond AI, thank you! Follow RedmondAI on Twitter @RedmondAI.
Model Description
Nous-Hermes-Llama2-13b is a state-of-the-art language model fine-tuned on over 300,000 instructions. This model was fine-tuned by Nous Research, with Teknium and Emozilla leading the fine tuning process and dataset curation, Redmond AI sponsoring the compute, and several other contributors.
This Hermes model uses the exact same dataset as Hermes on Llama-1. This is to ensure consistency between the old Hermes and new, for anyone who wanted to keep Hermes as similar to the old one, just more capable.
This model stands out for its long responses, lower hallucination rate, and absence of OpenAI censorship mechanisms. The fine-tuning process was performed with a 4096 sequence length on an 8x a100 80GB DGX machine.
Example Outputs:
Model Training
The model was trained almost entirely on synthetic GPT-4 outputs. Curating high quality GPT-4 datasets enables incredibly high quality in knowledge, task completion, and style.
This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below
Collaborators
The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art, and Redmond AI.
Special mention goes to @winglian for assisting in some of the training issues.
Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly.
Among the contributors of datasets:
- GPTeacher was made available by Teknium
- Wizard LM by nlpxucan
- Nous Research Instruct Dataset was provided by Karan4D and HueminArt.
- GPT4-LLM and Unnatural Instructions were provided by Microsoft
- Airoboros dataset by jondurbin
- Camel-AI's domain expert datasets are from Camel-AI
- CodeAlpaca dataset by Sahil 2801.
If anyone was left out, please open a thread in the community tab.
Prompt Format
The model follows the Alpaca prompt format:
### Instruction:
<prompt>
### Response:
<leave a newline blank for model to respond>
or
### Instruction:
<prompt>
### Input:
<additional context>
### Response:
<leave a newline blank for model to respond>
Benchmark Results
AGI-Eval
| Task |Version| Metric |Value | |Stderr|
|agieval_aqua_rat | 0|acc |0.2362|± |0.0267|
| | |acc_norm|0.2480|± |0.0272|
|agieval_logiqa_en | 0|acc |0.3425|± |0.0186|
| | |acc_norm|0.3472|± |0.0187|
|agieval_lsat_ar | 0|acc |0.2522|± |0.0287|
| | |acc_norm|0.2087|± |0.0269|
|agieval_lsat_lr | 0|acc |0.3510|± |0.0212|
| | |acc_norm|0.3627|± |0.0213|
|agieval_lsat_rc | 0|acc |0.4647|± |0.0305|
| | |acc_norm|0.4424|± |0.0303|
|agieval_sat_en | 0|acc |0.6602|± |0.0331|
| | |acc_norm|0.6165|± |0.0340|
|agieval_sat_en_without_passage| 0|acc |0.4320|± |0.0346|
| | |acc_norm|0.4272|± |0.0345|
|agieval_sat_math | 0|acc |0.2909|± |0.0307|
| | |acc_norm|0.2727|± |0.0301|
GPT-4All Benchmark Set
| Task |Version| Metric |Value | |Stderr|
|arc_challenge| 0|acc |0.5102|± |0.0146|
| | |acc_norm|0.5213|± |0.0146|
|arc_easy | 0|acc |0.7959|± |0.0083|
| | |acc_norm|0.7567|± |0.0088|
|boolq | 1|acc |0.8394|± |0.0064|
|hellaswag | 0|acc |0.6164|± |0.0049|
| | |acc_norm|0.8009|± |0.0040|
|openbookqa | 0|acc |0.3580|± |0.0215|
| | |acc_norm|0.4620|± |0.0223|
|piqa | 0|acc |0.7992|± |0.0093|
| | |acc_norm|0.8069|± |0.0092|
|winogrande | 0|acc |0.7127|± |0.0127|
BigBench Reasoning Test
| Task |Version| Metric |Value | |Stderr|
|bigbench_causal_judgement | 0|multiple_choice_grade|0.5526|± |0.0362|
|bigbench_date_understanding | 0|multiple_choice_grade|0.7344|± |0.0230|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|0.2636|± |0.0275|
|bigbench_geometric_shapes | 0|multiple_choice_grade|0.0195|± |0.0073|
| | |exact_str_match |0.0000|± |0.0000|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2760|± |0.0200|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2100|± |0.0154|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4400|± |0.0287|
|bigbench_movie_recommendation | 0|multiple_choice_grade|0.2440|± |0.0192|
|bigbench_navigate | 0|multiple_choice_grade|0.4950|± |0.0158|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5570|± |0.0111|
|bigbench_ruin_names | 0|multiple_choice_grade|0.3728|± |0.0229|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1854|± |0.0123|
|bigbench_snarks | 0|multiple_choice_grade|0.6298|± |0.0360|
|bigbench_sports_understanding | 0|multiple_choice_grade|0.6156|± |0.0155|
|bigbench_temporal_sequences | 0|multiple_choice_grade|0.3140|± |0.0147|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2032|± |0.0114|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1406|± |0.0083|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4400|± |0.0287|
These are the highest benchmarks Hermes has seen on every metric, achieving the following average scores:
- GPT4All benchmark average is now 70.0 - from 68.8 in Hermes-Llama1
- 0.3657 on BigBench, up from 0.328 on hermes-llama1
- 0.372 on AGIEval, up from 0.354 on Hermes-llama1
These benchmarks currently have us at #1 on ARC-c, ARC-e, Hellaswag, and OpenBookQA, and 2nd place on Winogrande, comparing to GPT4all's benchmarking list, supplanting Hermes 1 for the new top position.
Resources for Applied Use Cases:
Check out LM Studio for a nice chatgpt style interface here: https://lmstudio.ai/
For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot
Future Plans
We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward.
Model Usage
The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.
- Downloads last month
- 82