LongAlpaca-70B-GGUF / README.md
TheBloke's picture
Upload README.md
05047ec
---
base_model: Yukang/LongAlpaca-70B
inference: false
license: llama2
model_creator: YukangChen
model_name: LongAlpaca 70B
model_type: llama
prompt_template: 'Below is an instruction that describes a task. Write a response
that appropriately completes the request.
### Instruction:
{prompt}
### Response:
'
quantized_by: TheBloke
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# LongAlpaca 70B - GGUF
- Model creator: [YukangChen](https://huggingface.co/Yukang)
- Original model: [LongAlpaca 70B](https://huggingface.co/Yukang/LongAlpaca-70B)
<!-- description start -->
## Description
This repo contains GGUF format model files for [YukangChen's LongAlpaca 70B](https://huggingface.co/Yukang/LongAlpaca-70B).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplate list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LongAlpaca-70B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LongAlpaca-70B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF)
* [YukangChen's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Yukang/LongAlpaca-70B)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: Alpaca
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
```
<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [longalpaca-70b.Q2_K.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
| [longalpaca-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
| [longalpaca-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
| [longalpaca-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
| [longalpaca-70b.Q4_0.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [longalpaca-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
| [longalpaca-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
| [longalpaca-70b.Q5_0.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [longalpaca-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
| [longalpaca-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/LongAlpaca-70B-GGUF/blob/main/longalpaca-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
| longalpaca-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
| longalpaca-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
### Q6_K and Q8_0 files are split and require joining
**Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
<details>
<summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
### q6_K
Please download:
* `longalpaca-70b.Q6_K.gguf-split-a`
* `longalpaca-70b.Q6_K.gguf-split-b`
### q8_0
Please download:
* `longalpaca-70b.Q8_0.gguf-split-a`
* `longalpaca-70b.Q8_0.gguf-split-b`
To join the files, do the following:
Linux and macOS:
```
cat longalpaca-70b.Q6_K.gguf-split-* > longalpaca-70b.Q6_K.gguf && rm longalpaca-70b.Q6_K.gguf-split-*
cat longalpaca-70b.Q8_0.gguf-split-* > longalpaca-70b.Q8_0.gguf && rm longalpaca-70b.Q8_0.gguf-split-*
```
Windows command line:
```
COPY /B longalpaca-70b.Q6_K.gguf-split-a + longalpaca-70b.Q6_K.gguf-split-b longalpaca-70b.Q6_K.gguf
del longalpaca-70b.Q6_K.gguf-split-a longalpaca-70b.Q6_K.gguf-split-b
COPY /B longalpaca-70b.Q8_0.gguf-split-a + longalpaca-70b.Q8_0.gguf-split-b longalpaca-70b.Q8_0.gguf
del longalpaca-70b.Q8_0.gguf-split-a longalpaca-70b.Q8_0.gguf-split-b
```
</details>
<!-- README_GGUF.md-provided-files end -->
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
- LM Studio
- LoLLMS Web UI
- Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: TheBloke/LongAlpaca-70B-GGUF and below it, a specific filename to download, such as: longalpaca-70b.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download TheBloke/LongAlpaca-70B-GGUF longalpaca-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download TheBloke/LongAlpaca-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/LongAlpaca-70B-GGUF longalpaca-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 32 -m longalpaca-70b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
### How to load this model in Python code, using ctransformers
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```
#### Simple ctransformers example code
```python
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/LongAlpaca-70B-GGUF", model_file="longalpaca-70b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
print(llm("AI is going to"))
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
<!-- README_GGUF.md-how-to-run end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
<!-- original-model-card start -->
# Original model card: YukangChen's LongAlpaca 70B
# LongLoRA and LongAlpaca for Long-context LLMs
[![Huggingface Models](https://img.shields.io/badge/Models-Huggingface%20Models-bron)](https://huggingface.co/Yukang)
[![Github](https://img.shields.io/badge/Github-Repo-cyan)](https://github.com/dvlab-research/LongLoRA)
[![Data](https://img.shields.io/badge/Data-LongAlpaca%2012k-light)](https://huggingface.co/datasets/Yukang/LongAlpaca-12k)
[![Paper](https://img.shields.io/badge/Paper-Arvix-blue)](https://arxiv.org/abs/2309.12307)
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-yellow.svg)](https://github.com/dvlab-research/LongLoRA/blob/main/LICENSE)
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-orange.svg)](https://github.com/dvlab-research/LongLoRA/blob/main/DATA_LICENSE)
[![Weight License](https://img.shields.io/badge/Weight%20License-CC%20By%20NC%204.0-red)](https://github.com/dvlab-research/LongLoRA/blob/main/WEIGHT_LICENSE)
For detailed usage and codes, please visit the [Github project](https://github.com/dvlab-research/LongLoRA).
## TABLE OF CONTENTS
1. [News](#news)
2. [Examples](#examples)
3. [Highlights](#highlights)
4. [How to contribute](#how-to-contribute)
5. [Requirements](#usage-requirements)
6. [Installation and quick guide](#installation-and-quick-guide)
7. [LongAlpaca Data](#longalpaca-data)
8. [Models](#models)
9. [Training](#training)
10. [Evaluation](#evaluation)
11. [Demo](#demo)
12. [Data Generation via Pdf2Text](#data-generation-via-pdf2text)
13. [Citation](#citation)
14. [Acknowledgement](#acknowledgement)
15. [License](#license)
## News
- [x] [2023.10.8] **We release the long instruction-following dataset**, [LongAlpaca-12k](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) and **the corresponding models**, [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B), and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B).
- (*The previous sft models*, [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) and [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), *have been depreciated*.)
- [x] [2023.10.3] We add support GPTNeoX models. Please refer to this [PR](https://github.com/dvlab-research/LongLoRA/pull/32) for usage. Thanks for @naubull2 for this contribution.
- [x] [2023.9.22] We release all our fine-tuned [models](https://huggingface.co/Yukang), including **70B-32k models**, [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k), [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft). Welcome to check them out!
- [x] [2023.9.22] We release [Paper](http://arxiv.org/abs/2309.12307) and this GitHub repo, including training and evaluation code.
**LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models [[Paper](http://arxiv.org/abs/2309.12307)]** <br />
[Yukang Chen](https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en),
[Shengju Qian](https://scholar.google.com/citations?user=QNnWmasAAAAJ),
[Haotian Tang](https://scholar.google.com/citations?user=WxL13BAAAAAJ&hl),
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ&hl=zh-CN),
[Zhijian Liu](https://scholar.google.com/citations?user=3coYSTUAAAAJ&hl=en),
[Song Han](https://scholar.google.com/citations?user=E0iCaa4AAAAJ&hl=zh-CN),
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ&hl=en)<br />
## Highlights
1. In LongLoRA approach, The proposed shifted short attention is easy to implement, compatible with Flash-Attention, and is not required during inference.
2. We released all our models, including models from 7B to 70B, context length from 8k to 100k, including [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft), [LLaMA2-LongLoRA-13B-64k](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k), and [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k).
3. We built up a long-context instruction-following dataset, [LongAlpaca-12k](#longalpaca-data). We released the corresponding [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B) and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B) models. To our best knowledge, this is the first open-sourced long-context 70B model.
## How to Contribute
- Make sure to have git installed.
- Create your own [fork](https://github.com/dvlab-research/LongLoRA/fork) of the project.
- Clone the repository on your local machine, using git clone and pasting the url of this project.
- Read both the `Requirements` and `Installation and Quick Guide` sections below.
- Commit and push your changes.
- Make a pull request when finished modifying the project.
## Usage Requirements
To download and use the [pre-trained weights](#pre-trained-weights) you will need:
1. Hugging Face (HF) account with valid email. Note, the email used for HF must alse be used for the license agreement.
2. Accept the Meta [license and acceptable use policy](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
## Installation and Quick Guide
To install and run the application:
1. [Fork this repo](https://github.com/dvlab-research/LongLoRA/fork) on github
2. Clone the repository on your local machine, using git clone and pasting the url of this project.
3. Run the following code:
```
pip install -r requirements.txt
pip install flash-attn --no-build-isolation
```
4. Use either a [Released model](#released-models) or [Fine tune](#fine-tuning) a model to fit your preferences.
5. Test your model by chat.
6. Deploy your own demo.
## LongAlpaca Data
LongAlpaca-12k contains 9k long QA data that we collected and 3k short QA sampled from the original [Alpaca data](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json). This is to avoid the case that the model might degrade at short instruction following. The data we collect contains various types and amounts as the following figure.
| Data | Short QA | Long QA | Total | Download |
|:---------------|----------|----------|----------|----------|
| LongAlpaca-12k | 3k | 9k | 12k | [Link](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) |
Following the original Alpaca format, our Long QA data uses the following prompts for fine-tuning:
- `instruction`: `str`, describes the task the model should perform. For example, to answer a question after reading a book section or paper. We vary the contents and questions to make instructions diverse.
- `output`: `str`, the answer to the instruction.
We did not use the `input` format in the Alpaca format for simplicity.
## Models
### Models with supervised fine-tuning
| Model | Size | Context | Train | Link |
|:---------------|------|---------|---------|-----------------------------------------------------------------------------------------------------------------------|
| LongAlpaca-7B | 7B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-7B) |
| LongAlpaca-13B | 13B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-13B) |
| LongAlpaca-70B | 70B | 32768 | LoRA+ | [Model](https://huggingface.co/Yukang/LongAlpaca-70B) [(LoRA-weight)](https://huggingface.co/Yukang/LongAlpaca-70B-lora) |
### Models with context extension via fully fine-tuning
| Model | Size | Context | Train | Link |
|:----------------------------|------|---------|-------|-------------------------------------------------------------------|
| Llama-2-7b-longlora-8k-ft | 7B | 8192 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k-ft) |
| Llama-2-7b-longlora-16k-ft | 7B | 16384 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k-ft) |
| Llama-2-7b-longlora-32k-ft | 7B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k-ft) |
| Llama-2-7b-longlora-100k-ft | 7B | 100000 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft) |
| Llama-2-13b-longlora-8k-ft | 13B | 8192 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k-ft) |
| Llama-2-13b-longlora-16k-ft | 13B | 16384 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft) |
| Llama-2-13b-longlora-32k-ft | 13B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k-ft) |
### Models with context extension via improved LoRA fine-tuning
| Model | Size | Context | Train | Link |
|:----------------------------|------|---------|-------|---------------------------------------------------------------------|
| Llama-2-7b-longlora-8k | 7B | 8192 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k) |
| Llama-2-7b-longlora-16k | 7B | 16384 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k) |
| Llama-2-7b-longlora-32k | 7B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k) |
| Llama-2-13b-longlora-8k | 13B | 8192 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k) |
| Llama-2-13b-longlora-16k | 13B | 16384 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k) |
| Llama-2-13b-longlora-32k | 13B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k) |
| Llama-2-13b-longlora-64k | 13B | 65536 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k) |
| Llama-2-70b-longlora-32k | 70B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k) |
| Llama-2-70b-chat-longlora-32k | 70B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k) |
## Training
### Pre-trained weights
We use LLaMA2 models as the pre-trained weights and fine-tune them to long context window sizes. Download based on your choices.
| Pre-trained weights |
|:-------------------------------------------------------------------------------------|
| [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) |
|[Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) |
| [Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) |
| [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
| [Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) |
| [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) |
This project also supports GPTNeoX models as the base model architecture. Some candidate pre-trained weights may include [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b), [Polyglot-ko-12.8B](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) and other variants.
### Fine-tuning
```
torchrun --nproc_per_node=8 fine-tune.py \
--model_name_or_path path_to/Llama-2-7b-hf \
--bf16 True \
--output_dir path_to_saving_checkpoints \
--cache_dir path_to_cache \
--model_max_length 8192 \
--use_flash_attn True \
--low_rank_training False \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0.0 \
--warmup_steps 20 \
--lr_scheduler_type "constant_with_warmup" \
--logging_steps 1 \
--deepspeed "ds_configs/stage2.json" \
--tf32 True \
--max_steps 1000
```
- Please remember to change `path_to/Llama-2-7b-hf`, `path_to_saving_checkpoints`, `path_to_cache` to your own directory.
- Note that you can change `model_max_length` to other values.
- You could change `ds_configs/stage2.json` to `ds_configs/stage3.json` if you want.
- Please set `use_flash_attn` as `False` if you use V100 machines or do not install flash attention.
- You can set `low_rank_training` as `False` if you want to use fully fine-tuning. It will cost more GPU memory and slower, but the performance will be a bit better.
- When training is finished, to get the full model weight:
```
cd path_to_saving_checkpoints && python zero_to_fp32.py . pytorch_model.bin
```
### Supervised Fine-tuning
```
torchrun --nproc_per_node=8 supervised-fine-tune.py \
--model_name_or_path path_to_Llama2_chat_models \
--bf16 True \
--output_dir path_to_saving_checkpoints \
--model_max_length 32768 \
--use_flash_attn True \
--data_path LongAlpaca-12k.json \
--low_rank_training True \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0.0 \
--warmup_steps 20 \
--lr_scheduler_type "constant_with_warmup" \
--logging_steps 1 \
--deepspeed "ds_configs/stage2.json" \
--tf32 True
```
- There is no need to make supervised fine-tuning upon the fine-tuned context extended models. It is all right to directly use base model as Llama2-chat models, as the amount of long instruction following data is enough for SFT.
- Our long instruction following data can be found in [LongAlpaca-12k.json](https://huggingface.co/datasets/Yukang/LongAlpaca-12k).
### Get trainable weights in low-rank training
In low-rank training, we set embedding and normalization layers as trainable. Please use the following line to extract the trainable weights `trainable_params.bin` from `pytorch_model.bin`
```
python3 get_trainable_weights.py --checkpoint_path path_to_saving_checkpoints --trainable_params "embed,norm"
```
### Merge LoRA Weight
Merge the LoRA weights of `pytorch_model.bin` and trainable parameters `trainable_params.bin`, save the resulting model into your desired path in the Hugging Face format:
```
python3 merge_lora_weights_and_save_hf_model.py \
--base_model path_to/Llama-2-7b-hf \
--peft_model path_to_saving_checkpoints \
--context_size 8192 \
--save_path path_to_saving_merged_model
```
For example,
```
python3 merge_lora_weights_and_save_hf_model.py \
--base_model /dataset/pretrained-models/Llama-2-7b-hf \
--peft_model /dataset/yukangchen/hf_models/lora-models/Llama-2-7b-longlora-8k \
--context_size 8192 \
--save_path /dataset/yukangchen/models/Llama-2-7b-longlora-8k-merged
```
## Evaluation
### Perplexity Validation
To evaluate a model that is trained in the low-rank setting, please set both `base_model` and `peft_model`. `base_model` is the pre-trained weight. `peft_model` is the path to the saved checkpoint, which should contain `trainable_params.bin`, `adapter_model.bin` and `adapter_config.json`. For example,
```
python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to/Llama-2-7b-hf --peft_model path_to_saving_checkpoints --data_path pg19/test.bin
```
To evaluate a model that is fully fine-tuned, you only need to set `base_model` as the path to the saved checkpoint, which should contain `pytorch_model.bin` and `config.json`. `peft_model` should be ignored.
```
python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to_saving_checkpoints --data_path pg19/test.bin
```
- Note that `--seq_len` is to set the sequence length for evaluation. `--context_size` is to set the context length of the model during fine-tuning. `--seq_len` should not be larger than `--context_size`.
- We have already tokenized the validation and test splits of PG19 and proof-pile dataset into `pg19/validation.bin`, `pg19/test.bin`, and `proof-pile/test_sampled_data.bin`, with the tokenizer of LLaMA. `proof-pile/test_sampled_data.bin` contains 128 documents that are randomly sampled from the total proof-pile test split. For each document, it has at least 32768 tokens. We also release the sampled ids in [proof-pile/test_sampled_ids.bin](https://drive.google.com/file/d/1cnzWODLRQYAd7HeugzLCIhaqzaLZv7J5/view?usp=share_link). You can download them from the links below.
| Dataset | Split | Link |
|:-----------|------------|--------------------------------------------------------------------------------------------------------------|
| PG19 | validation | [pg19/validation.bin](https://drive.google.com/file/d/1rbJvb0qRIf2mQoN2ON7S93TbTzMnlrN6/view?usp=share_link) |
| PG19 | test | [pg19/test.bin](https://drive.google.com/file/d/1QANDMdctpacPAYgS04adDXqByGEq-Ret/view?usp=share_link) |
| Proof-pile | test | [proof-pile/test_sampled_data.bin](https://drive.google.com/file/d/1bUI5lPDvrqzY_XXJJ2sSuvZx0Y9AZClE/view?usp=share_link) |
### Passkey Retrieval
We provide a manner to test the passkey retrieval accuracy. For example,
```
python3 passkey_retrivial.py \
--context_size 32768 \
--base_model path_to/Llama-2-7b-longlora-32k \
--max_tokens 32768 \
--interval 1000
```
- Note that the `context_size` is the context length during fine-tuning.
- `max_tokens` is maximum length for the document in passkey retrieval evaluation.
- `interval` is the interval during the document length increasing. It is a rough number because the document increases by sentences.
## Demo
### Local Inference
To chat with [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) or [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), you need to run `merge_lora_weights_and_save_hf_model.py` first, and then:
```
python3 inference.py \
--base_model path_to_model \
--question $question \
--context_size $context_length \
--max_gen_len $max_gen_len \
--flash_attn True \
--material $material_content \
--material_type $material_type \
--material_title $material_title
```
To ask a question related to a book:
```
python3 inference.py \
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
--question "Why doesn't Professor Snape seem to like Harry?" \
--context_size 32768 \
--max_gen_len 512 \
--flash_attn True \
--material "materials/Harry Potter and the Philosophers Stone_section2.txt" \
--material_type "book" \
--material_title "Harry Potter and the Philosophers Stone"
```
Note that you can ignore `material_type` or `material_title`.
To ask a question related to a paper:
```
python3 inference.py \
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
--question "What are the main contributions and novelties of this work?" \
--context_size 32768 \
--max_gen_len 512 \
--flash_attn True \
--material "materials/paper1.txt" \
--material_type "paper"
```
### Online Demo
To deploy your own demo run
```
python3 demo.py \
--base_model path_to_model \
--context_size $context_size \
--max_gen_len $max_gen_len \
--flash_attn True
```
Example
```
python3 demo.py \
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
--context_size 32768 \
--max_gen_len 512 \
--flash_attn True
```
- Note that `flash_attn=True` will make the generation slow but save much GPU memory.
## Data Generation via Pdf2text
During our dataset collection, we convert paper and books from pdf to text. The conversion quality has a large influence on the final model quality. We think that this step is non-trivial. We release the tool for the pdf2txt conversion, in the folder `pdf2txt`. It is built upon `pdf2image`, `easyocr`, `ditod` and `detectron2`. Please refer to the [README.md](pdf2txt/README.md) in `pdf2txt` for more details.
## Citation
If you find this project useful in your research, please consider citing:
```
@article{longlora,
title={LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models},
author={Yukang Chen and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia},
journal={arXiv:2309.12307},
year={2023}
}
```
```
@misc{long-alpaca,
author = {Yukang Chen and Shaozuo Yu and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia},
title = {Long Alpaca: Long-context Instruction-following models},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/dvlab-research/LongLoRA}},
}
```
## Acknowledgement
- This work is built upon the [LLaMA2](https://ai.meta.com/llama) as the pre-trained models.
- This work can also be built upon the [GPTNeoX-HF](https://huggingface.co/docs/transformers/model_doc/gpt_neox) which is based upon [EleutherAI/GPTNeoX](https://github.com/EleutherAI/gpt-neox) as the pre-trained model architecture.
- This work is based on [DeepSpeed](https://github.com/microsoft/DeepSpeed), [peft](https://github.com/huggingface/peft), and [Flash-Attention2](https://github.com/Dao-AILab/flash-attention) for acceleration.
- Some evaluation code is modified upon [Landmark Attention](https://github.com/epfml/landmark-attention).
- We use [LongChat](https://github.com/DachengLi1/LongChat) for the retrieval evaluation.
## License
- LongLoRA is licensed under the Apache License 2.0. This means that it requires the preservation of copyright and license notices.
- Data and weights are under CC-BY-NC 4.0 License. They are licensed for research use only, and allowed only non-commercial. Models trained using the dataset should not be used outside of research purposes.
<!-- original-model-card end -->