Fine-tuned LVBERT for multi-label emotion classification task.
Model was trained on lv_emotions dataset. This dataset is Latvian translation of GoEmotions and Twitter Emotions dataset. Google Translate was used to generate the machine translation.
Original 26 emotions were mapped to 6 base emotions as per Dr. Ekman theory.
Labels predicted by classifier:
0: anger
1: disgust
2: fear
3: joy
4: sadness
5: surprise
6: neutral
Seed used for random number generator is 42:
def set_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
Training parameters:
max_length: null
batch_size: 32
shuffle: True
num_workers: 4
pin_memory: False
drop_last: False
optimizer: adam
lr: 0.000005
weight_decay: 0
problem_type: multi_label_classification
num_epochs: 3
Evaluation results on test split of lv_go_emotions
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
anger | 0.57 | 0.36 | 0.44 | 726 |
disgust | 0.42 | 0.29 | 0.35 | 123 |
fear | 0.59 | 0.43 | 0.50 | 98 |
joy | 0.78 | 0.80 | 0.79 | 2104 |
sadness | 0.65 | 0.42 | 0.51 | 379 |
surprise | 0.62 | 0.38 | 0.47 | 677 |
neutral | 0.66 | 0.58 | 0.62 | 1787 |
micro avg | 0.70 | 0.59 | 0.64 | 5894 |
macro avg | 0.61 | 0.46 | 0.52 | 5894 |
weighted avg | 0.68 | 0.59 | 0.63 | 5894 |
samples avg | 0.62 | 0.61 | 0.61 | 5894 |
Evaluation results on test split of lv_twitter_emotions
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
anger | 0.94 | 0.87 | 0.90 | 12013 |
disgust | 0.92 | 0.92 | 0.92 | 14117 |
fear | 0.74 | 0.80 | 0.77 | 3342 |
joy | 0.87 | 0.88 | 0.87 | 5913 |
sadness | 0.81 | 0.80 | 0.81 | 4786 |
surprise | 0.93 | 0.57 | 0.71 | 1510 |
neutral | 0.00 | 0.00 | 0.00 | 0 |
micro avg | 0.89 | 0.87 | 0.88 | 41681 |
macro avg | 0.74 | 0.69 | 0.71 | 41681 |
weighted avg | 0.89 | 0.87 | 0.88 | 41681 |
samples avg | 0.86 | 0.87 | 0.86 | 41681 |
- Downloads last month
- 8
Model tree for SkyWater21/lvbert-lv-emotions-ekman
Base model
AiLab-IMCS-UL/lvbert