metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: roberta-base
model-index:
- name: run-3
results: []
run-3
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.4223
- Accuracy: 0.75
- Precision: 0.7128
- Recall: 0.6998
- F1: 0.7043
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.0025 | 1.0 | 50 | 0.8925 | 0.63 | 0.6703 | 0.5704 | 0.5060 |
0.8187 | 2.0 | 100 | 0.7915 | 0.595 | 0.6007 | 0.5926 | 0.5344 |
0.5671 | 3.0 | 150 | 0.9573 | 0.695 | 0.6520 | 0.6350 | 0.6380 |
0.3218 | 4.0 | 200 | 0.9195 | 0.68 | 0.6447 | 0.6539 | 0.6461 |
0.2208 | 5.0 | 250 | 1.2429 | 0.715 | 0.6801 | 0.6617 | 0.6663 |
0.1614 | 6.0 | 300 | 1.5295 | 0.71 | 0.6736 | 0.6543 | 0.6423 |
0.1129 | 7.0 | 350 | 2.1055 | 0.71 | 0.6779 | 0.6413 | 0.6511 |
0.098 | 8.0 | 400 | 1.9579 | 0.705 | 0.6697 | 0.6558 | 0.6601 |
0.0479 | 9.0 | 450 | 2.0535 | 0.72 | 0.6794 | 0.6663 | 0.6711 |
0.0173 | 10.0 | 500 | 2.5381 | 0.7 | 0.6838 | 0.6604 | 0.6608 |
0.0308 | 11.0 | 550 | 2.4592 | 0.735 | 0.7014 | 0.6851 | 0.6901 |
0.0265 | 12.0 | 600 | 2.3131 | 0.725 | 0.6910 | 0.6845 | 0.6849 |
0.016 | 13.0 | 650 | 2.4025 | 0.74 | 0.7035 | 0.6915 | 0.6949 |
0.013 | 14.0 | 700 | 2.3933 | 0.745 | 0.7070 | 0.6831 | 0.6909 |
0.016 | 15.0 | 750 | 2.6819 | 0.725 | 0.7006 | 0.6738 | 0.6759 |
0.0126 | 16.0 | 800 | 2.3679 | 0.74 | 0.7050 | 0.6839 | 0.6898 |
0.0023 | 17.0 | 850 | 2.5252 | 0.745 | 0.7119 | 0.6880 | 0.6933 |
0.01 | 18.0 | 900 | 2.5598 | 0.74 | 0.7056 | 0.6828 | 0.6906 |
0.0093 | 19.0 | 950 | 2.4353 | 0.745 | 0.7057 | 0.6922 | 0.6974 |
0.0039 | 20.0 | 1000 | 2.4223 | 0.75 | 0.7128 | 0.6998 | 0.7043 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Tokenizers 0.13.2