|
--- |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- transformers |
|
model-index: |
|
- name: Salesforce/SFR-Embedding-2_R |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 92.71641791044776 |
|
- type: ap |
|
value: 69.47931007147756 |
|
- type: f1 |
|
value: 88.0252625393374 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 97.31075 |
|
- type: ap |
|
value: 96.26693923450127 |
|
- type: f1 |
|
value: 97.31042448894502 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 61.040000000000006 |
|
- type: f1 |
|
value: 60.78646832640785 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
metrics: |
|
- type: map_at_1 |
|
value: 37.767 |
|
- type: map_at_10 |
|
value: 53.908 |
|
- type: map_at_100 |
|
value: 54.583000000000006 |
|
- type: map_at_1000 |
|
value: 54.583999999999996 |
|
- type: map_at_20 |
|
value: 54.50899999999999 |
|
- type: map_at_3 |
|
value: 49.514 |
|
- type: map_at_5 |
|
value: 52.059999999999995 |
|
- type: mrr_at_1 |
|
value: 38.26458036984353 |
|
- type: mrr_at_10 |
|
value: 54.120408001987066 |
|
- type: mrr_at_100 |
|
value: 54.780719904297406 |
|
- type: mrr_at_1000 |
|
value: 54.78174226698592 |
|
- type: mrr_at_20 |
|
value: 54.706604527160295 |
|
- type: mrr_at_3 |
|
value: 49.71550497866294 |
|
- type: mrr_at_5 |
|
value: 52.247510668563436 |
|
- type: ndcg_at_1 |
|
value: 37.767 |
|
- type: ndcg_at_10 |
|
value: 62.339999999999996 |
|
- type: ndcg_at_100 |
|
value: 64.89399999999999 |
|
- type: ndcg_at_1000 |
|
value: 64.914 |
|
- type: ndcg_at_20 |
|
value: 64.402 |
|
- type: ndcg_at_3 |
|
value: 53.33 |
|
- type: ndcg_at_5 |
|
value: 57.93899999999999 |
|
- type: precision_at_1 |
|
value: 37.767 |
|
- type: precision_at_10 |
|
value: 8.905000000000001 |
|
- type: precision_at_100 |
|
value: 0.9950000000000001 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_20 |
|
value: 4.8469999999999995 |
|
- type: precision_at_3 |
|
value: 21.456 |
|
- type: precision_at_5 |
|
value: 15.121 |
|
- type: recall_at_1 |
|
value: 37.767 |
|
- type: recall_at_10 |
|
value: 89.047 |
|
- type: recall_at_100 |
|
value: 99.502 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_20 |
|
value: 96.942 |
|
- type: recall_at_3 |
|
value: 64.36699999999999 |
|
- type: recall_at_5 |
|
value: 75.605 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 54.024325012036314 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 48.817300846601675 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 66.71478959728732 |
|
- type: mrr |
|
value: 79.07202216066482 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.79517914982239 |
|
- type: cos_sim_spearman |
|
value: 87.60440576436838 |
|
- type: euclidean_pearson |
|
value: 87.75596873521118 |
|
- type: euclidean_spearman |
|
value: 87.60440576436838 |
|
- type: manhattan_pearson |
|
value: 87.74113773865973 |
|
- type: manhattan_spearman |
|
value: 87.50560833247899 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 90.02272727272727 |
|
- type: f1 |
|
value: 89.96681880265936 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 50.75930389699286 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 46.57286439805565 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.056666666666665 |
|
- type: map_at_10 |
|
value: 39.61749999999999 |
|
- type: map_at_100 |
|
value: 41.00666666666666 |
|
- type: map_at_1000 |
|
value: 41.11358333333334 |
|
- type: map_at_20 |
|
value: 40.410250000000005 |
|
- type: map_at_3 |
|
value: 35.98591666666667 |
|
- type: map_at_5 |
|
value: 38.02 |
|
- type: mrr_at_1 |
|
value: 33.73950708467142 |
|
- type: mrr_at_10 |
|
value: 44.0987162763402 |
|
- type: mrr_at_100 |
|
value: 44.94302678553521 |
|
- type: mrr_at_1000 |
|
value: 44.98758207055161 |
|
- type: mrr_at_20 |
|
value: 44.61156907536121 |
|
- type: mrr_at_3 |
|
value: 41.247253732468415 |
|
- type: mrr_at_5 |
|
value: 42.84859071071954 |
|
- type: ndcg_at_1 |
|
value: 33.739666666666665 |
|
- type: ndcg_at_10 |
|
value: 46.10683333333334 |
|
- type: ndcg_at_100 |
|
value: 51.49275000000001 |
|
- type: ndcg_at_1000 |
|
value: 53.2585 |
|
- type: ndcg_at_20 |
|
value: 48.349 |
|
- type: ndcg_at_3 |
|
value: 40.12416666666667 |
|
- type: ndcg_at_5 |
|
value: 42.94783333333333 |
|
- type: precision_at_1 |
|
value: 33.739666666666665 |
|
- type: precision_at_10 |
|
value: 8.46025 |
|
- type: precision_at_100 |
|
value: 1.3215833333333333 |
|
- type: precision_at_1000 |
|
value: 0.16524999999999998 |
|
- type: precision_at_20 |
|
value: 4.9935833333333335 |
|
- type: precision_at_3 |
|
value: 19.00516666666667 |
|
- type: precision_at_5 |
|
value: 13.72141666666667 |
|
- type: recall_at_1 |
|
value: 28.056666666666665 |
|
- type: recall_at_10 |
|
value: 60.68825000000001 |
|
- type: recall_at_100 |
|
value: 83.74433333333334 |
|
- type: recall_at_1000 |
|
value: 95.62299999999999 |
|
- type: recall_at_20 |
|
value: 68.77641666666668 |
|
- type: recall_at_3 |
|
value: 44.06991666666667 |
|
- type: recall_at_5 |
|
value: 51.324999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.609 |
|
- type: map_at_10 |
|
value: 25.584 |
|
- type: map_at_100 |
|
value: 27.291999999999998 |
|
- type: map_at_1000 |
|
value: 27.471 |
|
- type: map_at_20 |
|
value: 26.497 |
|
- type: map_at_3 |
|
value: 21.61 |
|
- type: map_at_5 |
|
value: 23.76 |
|
- type: mrr_at_1 |
|
value: 34.98371335504886 |
|
- type: mrr_at_10 |
|
value: 45.73747479447807 |
|
- type: mrr_at_100 |
|
value: 46.4973410206458 |
|
- type: mrr_at_1000 |
|
value: 46.53372527933685 |
|
- type: mrr_at_20 |
|
value: 46.19978503202757 |
|
- type: mrr_at_3 |
|
value: 42.85559174809991 |
|
- type: mrr_at_5 |
|
value: 44.65038002171556 |
|
- type: ndcg_at_1 |
|
value: 34.984 |
|
- type: ndcg_at_10 |
|
value: 34.427 |
|
- type: ndcg_at_100 |
|
value: 40.908 |
|
- type: ndcg_at_1000 |
|
value: 44.118 |
|
- type: ndcg_at_20 |
|
value: 36.885 |
|
- type: ndcg_at_3 |
|
value: 29.09 |
|
- type: ndcg_at_5 |
|
value: 30.979 |
|
- type: precision_at_1 |
|
value: 34.984 |
|
- type: precision_at_10 |
|
value: 10.476 |
|
- type: precision_at_100 |
|
value: 1.748 |
|
- type: precision_at_1000 |
|
value: 0.23500000000000001 |
|
- type: precision_at_20 |
|
value: 6.313000000000001 |
|
- type: precision_at_3 |
|
value: 21.39 |
|
- type: precision_at_5 |
|
value: 16.378 |
|
- type: recall_at_1 |
|
value: 15.609 |
|
- type: recall_at_10 |
|
value: 39.619 |
|
- type: recall_at_100 |
|
value: 61.952 |
|
- type: recall_at_1000 |
|
value: 79.861 |
|
- type: recall_at_20 |
|
value: 46.489000000000004 |
|
- type: recall_at_3 |
|
value: 26.134 |
|
- type: recall_at_5 |
|
value: 31.955 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/dbpedia |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
metrics: |
|
- type: map_at_1 |
|
value: 10.482 |
|
- type: map_at_10 |
|
value: 25.155 |
|
- type: map_at_100 |
|
value: 36.606 |
|
- type: map_at_1000 |
|
value: 38.617000000000004 |
|
- type: map_at_20 |
|
value: 29.676000000000002 |
|
- type: map_at_3 |
|
value: 16.881 |
|
- type: map_at_5 |
|
value: 20.043 |
|
- type: mrr_at_1 |
|
value: 76.0 |
|
- type: mrr_at_10 |
|
value: 82.5610119047619 |
|
- type: mrr_at_100 |
|
value: 82.74795937825128 |
|
- type: mrr_at_1000 |
|
value: 82.75526942226163 |
|
- type: mrr_at_20 |
|
value: 82.70580357142858 |
|
- type: mrr_at_3 |
|
value: 81.41666666666667 |
|
- type: mrr_at_5 |
|
value: 82.26666666666667 |
|
- type: ndcg_at_1 |
|
value: 63.625 |
|
- type: ndcg_at_10 |
|
value: 51.214000000000006 |
|
- type: ndcg_at_100 |
|
value: 56.411 |
|
- type: ndcg_at_1000 |
|
value: 63.429 |
|
- type: ndcg_at_20 |
|
value: 50.595 |
|
- type: ndcg_at_3 |
|
value: 54.989 |
|
- type: ndcg_at_5 |
|
value: 52.589 |
|
- type: precision_at_1 |
|
value: 76.0 |
|
- type: precision_at_10 |
|
value: 41.975 |
|
- type: precision_at_100 |
|
value: 13.26 |
|
- type: precision_at_1000 |
|
value: 2.493 |
|
- type: precision_at_20 |
|
value: 32.15 |
|
- type: precision_at_3 |
|
value: 59.0 |
|
- type: precision_at_5 |
|
value: 51.24999999999999 |
|
- type: recall_at_1 |
|
value: 10.482 |
|
- type: recall_at_10 |
|
value: 31.075000000000003 |
|
- type: recall_at_100 |
|
value: 63.119 |
|
- type: recall_at_1000 |
|
value: 85.32300000000001 |
|
- type: recall_at_20 |
|
value: 40.345 |
|
- type: recall_at_3 |
|
value: 17.916 |
|
- type: recall_at_5 |
|
value: 22.475 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 93.36500000000001 |
|
- type: f1 |
|
value: 89.89541440183861 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
metrics: |
|
- type: map_at_1 |
|
value: 81.948 |
|
- type: map_at_10 |
|
value: 89.47500000000001 |
|
- type: map_at_100 |
|
value: 89.66199999999999 |
|
- type: map_at_1000 |
|
value: 89.671 |
|
- type: map_at_20 |
|
value: 89.582 |
|
- type: map_at_3 |
|
value: 88.646 |
|
- type: map_at_5 |
|
value: 89.19 |
|
- type: mrr_at_1 |
|
value: 88.23882388238825 |
|
- type: mrr_at_10 |
|
value: 93.2122736083131 |
|
- type: mrr_at_100 |
|
value: 93.23908769526588 |
|
- type: mrr_at_1000 |
|
value: 93.23932393435209 |
|
- type: mrr_at_20 |
|
value: 93.23217832106207 |
|
- type: mrr_at_3 |
|
value: 92.98679867986787 |
|
- type: mrr_at_5 |
|
value: 93.16906690669056 |
|
- type: ndcg_at_1 |
|
value: 88.239 |
|
- type: ndcg_at_10 |
|
value: 92.155 |
|
- type: ndcg_at_100 |
|
value: 92.735 |
|
- type: ndcg_at_1000 |
|
value: 92.866 |
|
- type: ndcg_at_20 |
|
value: 92.39699999999999 |
|
- type: ndcg_at_3 |
|
value: 91.188 |
|
- type: ndcg_at_5 |
|
value: 91.754 |
|
- type: precision_at_1 |
|
value: 88.239 |
|
- type: precision_at_10 |
|
value: 10.903 |
|
- type: precision_at_100 |
|
value: 1.147 |
|
- type: precision_at_1000 |
|
value: 0.117 |
|
- type: precision_at_20 |
|
value: 5.5440000000000005 |
|
- type: precision_at_3 |
|
value: 34.598 |
|
- type: precision_at_5 |
|
value: 21.302 |
|
- type: recall_at_1 |
|
value: 81.948 |
|
- type: recall_at_10 |
|
value: 96.518 |
|
- type: recall_at_100 |
|
value: 98.646 |
|
- type: recall_at_1000 |
|
value: 99.399 |
|
- type: recall_at_20 |
|
value: 97.262 |
|
- type: recall_at_3 |
|
value: 93.89800000000001 |
|
- type: recall_at_5 |
|
value: 95.38600000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.033 |
|
- type: map_at_10 |
|
value: 53.55 |
|
- type: map_at_100 |
|
value: 55.672 |
|
- type: map_at_1000 |
|
value: 55.764 |
|
- type: map_at_20 |
|
value: 54.87800000000001 |
|
- type: map_at_3 |
|
value: 46.761 |
|
- type: map_at_5 |
|
value: 50.529 |
|
- type: mrr_at_1 |
|
value: 60.95679012345679 |
|
- type: mrr_at_10 |
|
value: 68.70835782872815 |
|
- type: mrr_at_100 |
|
value: 69.21918402444501 |
|
- type: mrr_at_1000 |
|
value: 69.23608783148705 |
|
- type: mrr_at_20 |
|
value: 69.07497388036454 |
|
- type: mrr_at_3 |
|
value: 66.76954732510285 |
|
- type: mrr_at_5 |
|
value: 67.95781893004109 |
|
- type: ndcg_at_1 |
|
value: 60.956999999999994 |
|
- type: ndcg_at_10 |
|
value: 61.766 |
|
- type: ndcg_at_100 |
|
value: 67.652 |
|
- type: ndcg_at_1000 |
|
value: 68.94500000000001 |
|
- type: ndcg_at_20 |
|
value: 64.48700000000001 |
|
- type: ndcg_at_3 |
|
value: 57.25 |
|
- type: ndcg_at_5 |
|
value: 58.64 |
|
- type: precision_at_1 |
|
value: 60.956999999999994 |
|
- type: precision_at_10 |
|
value: 17.083000000000002 |
|
- type: precision_at_100 |
|
value: 2.346 |
|
- type: precision_at_1000 |
|
value: 0.257 |
|
- type: precision_at_20 |
|
value: 9.807 |
|
- type: precision_at_3 |
|
value: 38.477 |
|
- type: precision_at_5 |
|
value: 27.962999999999997 |
|
- type: recall_at_1 |
|
value: 32.033 |
|
- type: recall_at_10 |
|
value: 69.44 |
|
- type: recall_at_100 |
|
value: 90.17500000000001 |
|
- type: recall_at_1000 |
|
value: 97.90100000000001 |
|
- type: recall_at_20 |
|
value: 77.629 |
|
- type: recall_at_3 |
|
value: 51.664 |
|
- type: recall_at_5 |
|
value: 59.565 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
metrics: |
|
- type: map_at_1 |
|
value: 42.741 |
|
- type: map_at_10 |
|
value: 74.811 |
|
- type: map_at_100 |
|
value: 75.508 |
|
- type: map_at_1000 |
|
value: 75.541 |
|
- type: map_at_20 |
|
value: 75.25699999999999 |
|
- type: map_at_3 |
|
value: 71.31 |
|
- type: map_at_5 |
|
value: 73.69 |
|
- type: mrr_at_1 |
|
value: 85.48278190411884 |
|
- type: mrr_at_10 |
|
value: 90.20347684425987 |
|
- type: mrr_at_100 |
|
value: 90.29734129342121 |
|
- type: mrr_at_1000 |
|
value: 90.30017606259217 |
|
- type: mrr_at_20 |
|
value: 90.27225310310567 |
|
- type: mrr_at_3 |
|
value: 89.67364393427842 |
|
- type: mrr_at_5 |
|
value: 90.02408282691847 |
|
- type: ndcg_at_1 |
|
value: 85.483 |
|
- type: ndcg_at_10 |
|
value: 81.361 |
|
- type: ndcg_at_100 |
|
value: 83.588 |
|
- type: ndcg_at_1000 |
|
value: 84.19 |
|
- type: ndcg_at_20 |
|
value: 82.42699999999999 |
|
- type: ndcg_at_3 |
|
value: 76.779 |
|
- type: ndcg_at_5 |
|
value: 79.581 |
|
- type: precision_at_1 |
|
value: 85.483 |
|
- type: precision_at_10 |
|
value: 17.113 |
|
- type: precision_at_100 |
|
value: 1.882 |
|
- type: precision_at_1000 |
|
value: 0.196 |
|
- type: precision_at_20 |
|
value: 8.899 |
|
- type: precision_at_3 |
|
value: 50.397999999999996 |
|
- type: precision_at_5 |
|
value: 32.443 |
|
- type: recall_at_1 |
|
value: 42.741 |
|
- type: recall_at_10 |
|
value: 85.564 |
|
- type: recall_at_100 |
|
value: 94.07799999999999 |
|
- type: recall_at_1000 |
|
value: 97.995 |
|
- type: recall_at_20 |
|
value: 88.98700000000001 |
|
- type: recall_at_3 |
|
value: 75.598 |
|
- type: recall_at_5 |
|
value: 81.107 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 96.80320000000002 |
|
- type: ap |
|
value: 94.98856145360044 |
|
- type: f1 |
|
value: 96.80287885839178 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.539 |
|
- type: map_at_10 |
|
value: 35.109 |
|
- type: map_at_100 |
|
value: 36.287000000000006 |
|
- type: map_at_1000 |
|
value: 36.335 |
|
- type: map_at_20 |
|
value: 35.838 |
|
- type: map_at_3 |
|
value: 31.11 |
|
- type: map_at_5 |
|
value: 33.455 |
|
- type: mrr_at_1 |
|
value: 23.15186246418338 |
|
- type: mrr_at_10 |
|
value: 35.70532018920268 |
|
- type: mrr_at_100 |
|
value: 36.815167506137584 |
|
- type: mrr_at_1000 |
|
value: 36.85695349443505 |
|
- type: mrr_at_20 |
|
value: 36.39500867880642 |
|
- type: mrr_at_3 |
|
value: 31.81232091690535 |
|
- type: mrr_at_5 |
|
value: 34.096704871060155 |
|
- type: ndcg_at_1 |
|
value: 23.152 |
|
- type: ndcg_at_10 |
|
value: 42.181999999999995 |
|
- type: ndcg_at_100 |
|
value: 47.847 |
|
- type: ndcg_at_1000 |
|
value: 48.988 |
|
- type: ndcg_at_20 |
|
value: 44.767 |
|
- type: ndcg_at_3 |
|
value: 34.088 |
|
- type: ndcg_at_5 |
|
value: 38.257999999999996 |
|
- type: precision_at_1 |
|
value: 23.152 |
|
- type: precision_at_10 |
|
value: 6.678000000000001 |
|
- type: precision_at_100 |
|
value: 0.9530000000000001 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_20 |
|
value: 3.881 |
|
- type: precision_at_3 |
|
value: 14.518 |
|
- type: precision_at_5 |
|
value: 10.831 |
|
- type: recall_at_1 |
|
value: 22.539 |
|
- type: recall_at_10 |
|
value: 63.965 |
|
- type: recall_at_100 |
|
value: 90.129 |
|
- type: recall_at_1000 |
|
value: 98.721 |
|
- type: recall_at_20 |
|
value: 74.00999999999999 |
|
- type: recall_at_3 |
|
value: 42.004999999999995 |
|
- type: recall_at_5 |
|
value: 52.028 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 98.5750113999088 |
|
- type: f1 |
|
value: 98.41576079230245 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 91.29502963976289 |
|
- type: f1 |
|
value: 74.84400169335184 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 85.96839273705447 |
|
- type: f1 |
|
value: 82.43129186593926 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 90.60860793544047 |
|
- type: f1 |
|
value: 89.79415994859477 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 46.661892807041355 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 44.17598473858937 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 |
|
metrics: |
|
- type: map |
|
value: 31.260919294024603 |
|
- type: mrr |
|
value: 32.37049108835034 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.672000000000001 |
|
- type: map_at_10 |
|
value: 15.972 |
|
- type: map_at_100 |
|
value: 20.94 |
|
- type: map_at_1000 |
|
value: 22.877 |
|
- type: map_at_20 |
|
value: 17.986 |
|
- type: map_at_3 |
|
value: 11.161 |
|
- type: map_at_5 |
|
value: 13.293 |
|
- type: mrr_at_1 |
|
value: 53.56037151702786 |
|
- type: mrr_at_10 |
|
value: 61.915696103002595 |
|
- type: mrr_at_100 |
|
value: 62.4130902631107 |
|
- type: mrr_at_1000 |
|
value: 62.45228087711845 |
|
- type: mrr_at_20 |
|
value: 62.1983715004112 |
|
- type: mrr_at_3 |
|
value: 60.31991744066049 |
|
- type: mrr_at_5 |
|
value: 61.27966976264191 |
|
- type: ndcg_at_1 |
|
value: 50.929 |
|
- type: ndcg_at_10 |
|
value: 41.336 |
|
- type: ndcg_at_100 |
|
value: 38.586999999999996 |
|
- type: ndcg_at_1000 |
|
value: 48.155 |
|
- type: ndcg_at_20 |
|
value: 38.888 |
|
- type: ndcg_at_3 |
|
value: 47.0 |
|
- type: ndcg_at_5 |
|
value: 44.335 |
|
- type: precision_at_1 |
|
value: 53.251000000000005 |
|
- type: precision_at_10 |
|
value: 31.146 |
|
- type: precision_at_100 |
|
value: 10.040000000000001 |
|
- type: precision_at_1000 |
|
value: 2.432 |
|
- type: precision_at_20 |
|
value: 23.421 |
|
- type: precision_at_3 |
|
value: 45.098 |
|
- type: precision_at_5 |
|
value: 39.071 |
|
- type: recall_at_1 |
|
value: 6.672000000000001 |
|
- type: recall_at_10 |
|
value: 20.764 |
|
- type: recall_at_100 |
|
value: 40.759 |
|
- type: recall_at_1000 |
|
value: 75.015 |
|
- type: recall_at_20 |
|
value: 25.548 |
|
- type: recall_at_3 |
|
value: 12.328 |
|
- type: recall_at_5 |
|
value: 15.601999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
metrics: |
|
- type: map_at_1 |
|
value: 50.944 |
|
- type: map_at_10 |
|
value: 67.565 |
|
- type: map_at_100 |
|
value: 68.10300000000001 |
|
- type: map_at_1000 |
|
value: 68.109 |
|
- type: map_at_20 |
|
value: 67.973 |
|
- type: map_at_3 |
|
value: 64.176 |
|
- type: map_at_5 |
|
value: 66.39699999999999 |
|
- type: mrr_at_1 |
|
value: 57.01042873696408 |
|
- type: mrr_at_10 |
|
value: 69.76629605105849 |
|
- type: mrr_at_100 |
|
value: 70.09927347130204 |
|
- type: mrr_at_1000 |
|
value: 70.10309675839956 |
|
- type: mrr_at_20 |
|
value: 70.02288627712392 |
|
- type: mrr_at_3 |
|
value: 67.46813441483191 |
|
- type: mrr_at_5 |
|
value: 68.93105446118189 |
|
- type: ndcg_at_1 |
|
value: 57.010000000000005 |
|
- type: ndcg_at_10 |
|
value: 73.956 |
|
- type: ndcg_at_100 |
|
value: 75.90299999999999 |
|
- type: ndcg_at_1000 |
|
value: 76.03999999999999 |
|
- type: ndcg_at_20 |
|
value: 75.17 |
|
- type: ndcg_at_3 |
|
value: 68.13900000000001 |
|
- type: ndcg_at_5 |
|
value: 71.532 |
|
- type: precision_at_1 |
|
value: 57.010000000000005 |
|
- type: precision_at_10 |
|
value: 10.91 |
|
- type: precision_at_100 |
|
value: 1.2 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_20 |
|
value: 5.753 |
|
- type: precision_at_3 |
|
value: 29.828 |
|
- type: precision_at_5 |
|
value: 19.971 |
|
- type: recall_at_1 |
|
value: 50.944 |
|
- type: recall_at_10 |
|
value: 90.754 |
|
- type: recall_at_100 |
|
value: 98.699 |
|
- type: recall_at_1000 |
|
value: 99.701 |
|
- type: recall_at_20 |
|
value: 95.148 |
|
- type: recall_at_3 |
|
value: 76.224 |
|
- type: recall_at_5 |
|
value: 83.872 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 |
|
metrics: |
|
- type: map_at_1 |
|
value: 71.856 |
|
- type: map_at_10 |
|
value: 86.077 |
|
- type: map_at_100 |
|
value: 86.696 |
|
- type: map_at_1000 |
|
value: 86.708 |
|
- type: map_at_20 |
|
value: 86.493 |
|
- type: map_at_3 |
|
value: 83.176 |
|
- type: map_at_5 |
|
value: 85.008 |
|
- type: mrr_at_1 |
|
value: 82.74000000000001 |
|
- type: mrr_at_10 |
|
value: 88.68947222222207 |
|
- type: mrr_at_100 |
|
value: 88.78196949571182 |
|
- type: mrr_at_1000 |
|
value: 88.78223256200576 |
|
- type: mrr_at_20 |
|
value: 88.76455636228219 |
|
- type: mrr_at_3 |
|
value: 87.85833333333316 |
|
- type: mrr_at_5 |
|
value: 88.43933333333311 |
|
- type: ndcg_at_1 |
|
value: 82.74000000000001 |
|
- type: ndcg_at_10 |
|
value: 89.583 |
|
- type: ndcg_at_100 |
|
value: 90.652 |
|
- type: ndcg_at_1000 |
|
value: 90.711 |
|
- type: ndcg_at_20 |
|
value: 90.203 |
|
- type: ndcg_at_3 |
|
value: 86.967 |
|
- type: ndcg_at_5 |
|
value: 88.43299999999999 |
|
- type: precision_at_1 |
|
value: 82.74000000000001 |
|
- type: precision_at_10 |
|
value: 13.617 |
|
- type: precision_at_100 |
|
value: 1.542 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_20 |
|
value: 7.217999999999999 |
|
- type: precision_at_3 |
|
value: 38.163000000000004 |
|
- type: precision_at_5 |
|
value: 25.05 |
|
- type: recall_at_1 |
|
value: 71.856 |
|
- type: recall_at_10 |
|
value: 96.244 |
|
- type: recall_at_100 |
|
value: 99.773 |
|
- type: recall_at_1000 |
|
value: 99.99900000000001 |
|
- type: recall_at_20 |
|
value: 98.221 |
|
- type: recall_at_3 |
|
value: 88.715 |
|
- type: recall_at_5 |
|
value: 92.88499999999999 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 62.91969510127886 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 |
|
metrics: |
|
- type: v_measure |
|
value: 72.74201090913765 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.8229999999999995 |
|
- type: map_at_10 |
|
value: 15.152 |
|
- type: map_at_100 |
|
value: 17.936 |
|
- type: map_at_1000 |
|
value: 18.292 |
|
- type: map_at_20 |
|
value: 16.526 |
|
- type: map_at_3 |
|
value: 10.294 |
|
- type: map_at_5 |
|
value: 12.794 |
|
- type: mrr_at_1 |
|
value: 28.599999999999998 |
|
- type: mrr_at_10 |
|
value: 40.68206349206347 |
|
- type: mrr_at_100 |
|
value: 41.673752995361795 |
|
- type: mrr_at_1000 |
|
value: 41.71500072915374 |
|
- type: mrr_at_20 |
|
value: 41.28552805166964 |
|
- type: mrr_at_3 |
|
value: 36.84999999999998 |
|
- type: mrr_at_5 |
|
value: 39.19999999999995 |
|
- type: ndcg_at_1 |
|
value: 28.599999999999998 |
|
- type: ndcg_at_10 |
|
value: 24.866 |
|
- type: ndcg_at_100 |
|
value: 34.597 |
|
- type: ndcg_at_1000 |
|
value: 39.994 |
|
- type: ndcg_at_20 |
|
value: 28.309 |
|
- type: ndcg_at_3 |
|
value: 22.749 |
|
- type: ndcg_at_5 |
|
value: 20.502000000000002 |
|
- type: precision_at_1 |
|
value: 28.599999999999998 |
|
- type: precision_at_10 |
|
value: 13.089999999999998 |
|
- type: precision_at_100 |
|
value: 2.7119999999999997 |
|
- type: precision_at_1000 |
|
value: 0.39899999999999997 |
|
- type: precision_at_20 |
|
value: 8.53 |
|
- type: precision_at_3 |
|
value: 21.099999999999998 |
|
- type: precision_at_5 |
|
value: 18.22 |
|
- type: recall_at_1 |
|
value: 5.8229999999999995 |
|
- type: recall_at_10 |
|
value: 26.522000000000002 |
|
- type: recall_at_100 |
|
value: 55.003 |
|
- type: recall_at_1000 |
|
value: 80.977 |
|
- type: recall_at_20 |
|
value: 34.618 |
|
- type: recall_at_3 |
|
value: 12.848 |
|
- type: recall_at_5 |
|
value: 18.477 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.72562067620224 |
|
- type: cos_sim_spearman |
|
value: 77.00710192931953 |
|
- type: euclidean_pearson |
|
value: 78.65843289108192 |
|
- type: euclidean_spearman |
|
value: 77.00710077709005 |
|
- type: manhattan_pearson |
|
value: 78.48859522905846 |
|
- type: manhattan_spearman |
|
value: 76.8213740840866 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.15015325911659 |
|
- type: cos_sim_spearman |
|
value: 75.67268325741222 |
|
- type: euclidean_pearson |
|
value: 75.54004763633206 |
|
- type: euclidean_spearman |
|
value: 75.67262179635058 |
|
- type: manhattan_pearson |
|
value: 75.80681616893116 |
|
- type: manhattan_spearman |
|
value: 75.93721016401406 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.71651874476737 |
|
- type: cos_sim_spearman |
|
value: 82.39667472464997 |
|
- type: euclidean_pearson |
|
value: 82.28256504757712 |
|
- type: euclidean_spearman |
|
value: 82.39663674872656 |
|
- type: manhattan_pearson |
|
value: 82.3192873176068 |
|
- type: manhattan_spearman |
|
value: 82.41915252757059 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.222967367593 |
|
- type: cos_sim_spearman |
|
value: 79.92685877403252 |
|
- type: euclidean_pearson |
|
value: 79.95053542861498 |
|
- type: euclidean_spearman |
|
value: 79.9268858850991 |
|
- type: manhattan_pearson |
|
value: 79.90485851323321 |
|
- type: manhattan_spearman |
|
value: 79.93878025669312 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.27539130156643 |
|
- type: cos_sim_spearman |
|
value: 85.81645767911826 |
|
- type: euclidean_pearson |
|
value: 85.5488615685444 |
|
- type: euclidean_spearman |
|
value: 85.81647022566916 |
|
- type: manhattan_pearson |
|
value: 85.6358149547879 |
|
- type: manhattan_spearman |
|
value: 85.96347118567043 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.43727336154858 |
|
- type: cos_sim_spearman |
|
value: 84.50468882202796 |
|
- type: euclidean_pearson |
|
value: 83.23576727105372 |
|
- type: euclidean_spearman |
|
value: 84.50468882202796 |
|
- type: manhattan_pearson |
|
value: 83.28843314503176 |
|
- type: manhattan_spearman |
|
value: 84.60383766214322 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.86589365166874 |
|
- type: cos_sim_spearman |
|
value: 88.93117996163835 |
|
- type: euclidean_pearson |
|
value: 89.12271565981082 |
|
- type: euclidean_spearman |
|
value: 88.93117996163835 |
|
- type: manhattan_pearson |
|
value: 88.94419759325545 |
|
- type: manhattan_spearman |
|
value: 88.63073561731899 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 67.96578378422929 |
|
- type: cos_sim_spearman |
|
value: 67.10257461424345 |
|
- type: euclidean_pearson |
|
value: 67.51317866195149 |
|
- type: euclidean_spearman |
|
value: 67.10257461424345 |
|
- type: manhattan_pearson |
|
value: 67.74940912013754 |
|
- type: manhattan_spearman |
|
value: 67.46694183937207 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.55433725920493 |
|
- type: cos_sim_spearman |
|
value: 83.60373857254014 |
|
- type: euclidean_pearson |
|
value: 83.08086082334839 |
|
- type: euclidean_spearman |
|
value: 83.6036864776559 |
|
- type: manhattan_pearson |
|
value: 83.2232267589246 |
|
- type: manhattan_spearman |
|
value: 83.78923946962664 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 87.28566757174322 |
|
- type: mrr |
|
value: 96.63827639317836 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 70.661 |
|
- type: map_at_10 |
|
value: 82.051 |
|
- type: map_at_100 |
|
value: 82.162 |
|
- type: map_at_1000 |
|
value: 82.167 |
|
- type: map_at_20 |
|
value: 82.122 |
|
- type: map_at_3 |
|
value: 79.919 |
|
- type: map_at_5 |
|
value: 81.368 |
|
- type: mrr_at_1 |
|
value: 74.33333333333333 |
|
- type: mrr_at_10 |
|
value: 82.98452380952381 |
|
- type: mrr_at_100 |
|
value: 83.09512420633841 |
|
- type: mrr_at_1000 |
|
value: 83.10026279387446 |
|
- type: mrr_at_20 |
|
value: 83.05460927960928 |
|
- type: mrr_at_3 |
|
value: 81.8888888888889 |
|
- type: mrr_at_5 |
|
value: 82.65555555555557 |
|
- type: ndcg_at_1 |
|
value: 74.333 |
|
- type: ndcg_at_10 |
|
value: 85.914 |
|
- type: ndcg_at_100 |
|
value: 86.473 |
|
- type: ndcg_at_1000 |
|
value: 86.602 |
|
- type: ndcg_at_20 |
|
value: 86.169 |
|
- type: ndcg_at_3 |
|
value: 83.047 |
|
- type: ndcg_at_5 |
|
value: 84.72 |
|
- type: precision_at_1 |
|
value: 74.333 |
|
- type: precision_at_10 |
|
value: 10.933 |
|
- type: precision_at_100 |
|
value: 1.1199999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_20 |
|
value: 5.5169999999999995 |
|
- type: precision_at_3 |
|
value: 32.444 |
|
- type: precision_at_5 |
|
value: 20.8 |
|
- type: recall_at_1 |
|
value: 70.661 |
|
- type: recall_at_10 |
|
value: 96.333 |
|
- type: recall_at_100 |
|
value: 99.0 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_20 |
|
value: 97.333 |
|
- type: recall_at_3 |
|
value: 88.64999999999999 |
|
- type: recall_at_5 |
|
value: 93.089 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.89108910891089 |
|
- type: cos_sim_ap |
|
value: 97.61815451002174 |
|
- type: cos_sim_f1 |
|
value: 94.51097804391219 |
|
- type: cos_sim_precision |
|
value: 94.32270916334662 |
|
- type: cos_sim_recall |
|
value: 94.69999999999999 |
|
- type: dot_accuracy |
|
value: 99.89108910891089 |
|
- type: dot_ap |
|
value: 97.61815451002175 |
|
- type: dot_f1 |
|
value: 94.51097804391219 |
|
- type: dot_precision |
|
value: 94.32270916334662 |
|
- type: dot_recall |
|
value: 94.69999999999999 |
|
- type: euclidean_accuracy |
|
value: 99.89108910891089 |
|
- type: euclidean_ap |
|
value: 97.61815534251431 |
|
- type: euclidean_f1 |
|
value: 94.51097804391219 |
|
- type: euclidean_precision |
|
value: 94.32270916334662 |
|
- type: euclidean_recall |
|
value: 94.69999999999999 |
|
- type: manhattan_accuracy |
|
value: 99.8940594059406 |
|
- type: manhattan_ap |
|
value: 97.66124472227202 |
|
- type: manhattan_f1 |
|
value: 94.65267366316841 |
|
- type: manhattan_precision |
|
value: 94.60539460539461 |
|
- type: manhattan_recall |
|
value: 94.69999999999999 |
|
- type: max_accuracy |
|
value: 99.8940594059406 |
|
- type: max_ap |
|
value: 97.66124472227202 |
|
- type: max_f1 |
|
value: 94.65267366316841 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 76.482776391195 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 48.29023235124473 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 55.3190739691685 |
|
- type: mrr |
|
value: 56.40441972243442 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.98570594378664 |
|
- type: cos_sim_spearman |
|
value: 30.712965330802174 |
|
- type: dot_pearson |
|
value: 31.98570540209124 |
|
- type: dot_spearman |
|
value: 30.712965330802174 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.25 |
|
- type: map_at_10 |
|
value: 2.2640000000000002 |
|
- type: map_at_100 |
|
value: 14.447 |
|
- type: map_at_1000 |
|
value: 35.452 |
|
- type: map_at_20 |
|
value: 4.163 |
|
- type: map_at_3 |
|
value: 0.715 |
|
- type: map_at_5 |
|
value: 1.1780000000000002 |
|
- type: mrr_at_1 |
|
value: 94.0 |
|
- type: mrr_at_10 |
|
value: 96.66666666666667 |
|
- type: mrr_at_100 |
|
value: 96.66666666666667 |
|
- type: mrr_at_1000 |
|
value: 96.66666666666667 |
|
- type: mrr_at_20 |
|
value: 96.66666666666667 |
|
- type: mrr_at_3 |
|
value: 96.66666666666667 |
|
- type: mrr_at_5 |
|
value: 96.66666666666667 |
|
- type: ndcg_at_1 |
|
value: 92.0 |
|
- type: ndcg_at_10 |
|
value: 87.26899999999999 |
|
- type: ndcg_at_100 |
|
value: 68.586 |
|
- type: ndcg_at_1000 |
|
value: 61.056999999999995 |
|
- type: ndcg_at_20 |
|
value: 83.452 |
|
- type: ndcg_at_3 |
|
value: 90.11200000000001 |
|
- type: ndcg_at_5 |
|
value: 89.103 |
|
- type: precision_at_1 |
|
value: 94.0 |
|
- type: precision_at_10 |
|
value: 91.2 |
|
- type: precision_at_100 |
|
value: 70.12 |
|
- type: precision_at_1000 |
|
value: 26.773999999999997 |
|
- type: precision_at_20 |
|
value: 87.3 |
|
- type: precision_at_3 |
|
value: 92.667 |
|
- type: precision_at_5 |
|
value: 92.4 |
|
- type: recall_at_1 |
|
value: 0.25 |
|
- type: recall_at_10 |
|
value: 2.3970000000000002 |
|
- type: recall_at_100 |
|
value: 17.233999999999998 |
|
- type: recall_at_1000 |
|
value: 57.879000000000005 |
|
- type: recall_at_20 |
|
value: 4.508 |
|
- type: recall_at_3 |
|
value: 0.734 |
|
- type: recall_at_5 |
|
value: 1.2269999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.806 |
|
- type: map_at_10 |
|
value: 11.369 |
|
- type: map_at_100 |
|
value: 17.791 |
|
- type: map_at_1000 |
|
value: 19.363 |
|
- type: map_at_20 |
|
value: 14.038999999999998 |
|
- type: map_at_3 |
|
value: 5.817 |
|
- type: map_at_5 |
|
value: 8.331 |
|
- type: mrr_at_1 |
|
value: 36.734693877551024 |
|
- type: mrr_at_10 |
|
value: 53.355199222546155 |
|
- type: mrr_at_100 |
|
value: 53.648197984932665 |
|
- type: mrr_at_1000 |
|
value: 53.648197984932665 |
|
- type: mrr_at_20 |
|
value: 53.500971817298336 |
|
- type: mrr_at_3 |
|
value: 48.63945578231292 |
|
- type: mrr_at_5 |
|
value: 51.29251700680272 |
|
- type: ndcg_at_1 |
|
value: 35.714 |
|
- type: ndcg_at_10 |
|
value: 28.18 |
|
- type: ndcg_at_100 |
|
value: 39.22 |
|
- type: ndcg_at_1000 |
|
value: 50.807 |
|
- type: ndcg_at_20 |
|
value: 28.979 |
|
- type: ndcg_at_3 |
|
value: 31.114000000000004 |
|
- type: ndcg_at_5 |
|
value: 29.687 |
|
- type: precision_at_1 |
|
value: 36.735 |
|
- type: precision_at_10 |
|
value: 24.898 |
|
- type: precision_at_100 |
|
value: 7.918 |
|
- type: precision_at_1000 |
|
value: 1.5779999999999998 |
|
- type: precision_at_20 |
|
value: 18.878 |
|
- type: precision_at_3 |
|
value: 31.293 |
|
- type: precision_at_5 |
|
value: 29.387999999999998 |
|
- type: recall_at_1 |
|
value: 2.806 |
|
- type: recall_at_10 |
|
value: 17.776 |
|
- type: recall_at_100 |
|
value: 49.41 |
|
- type: recall_at_1000 |
|
value: 84.97200000000001 |
|
- type: recall_at_20 |
|
value: 26.589000000000002 |
|
- type: recall_at_3 |
|
value: 6.866999999999999 |
|
- type: recall_at_5 |
|
value: 10.964 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de |
|
metrics: |
|
- type: accuracy |
|
value: 91.1376953125 |
|
- type: ap |
|
value: 40.51219896084815 |
|
- type: f1 |
|
value: 77.5195445434559 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 79.69722693831352 |
|
- type: f1 |
|
value: 80.02969178591319 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 66.42427742893598 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.81069321094355 |
|
- type: cos_sim_ap |
|
value: 78.57014017906349 |
|
- type: cos_sim_f1 |
|
value: 72.38883143743536 |
|
- type: cos_sim_precision |
|
value: 70.95793208312215 |
|
- type: cos_sim_recall |
|
value: 73.87862796833772 |
|
- type: dot_accuracy |
|
value: 87.81069321094355 |
|
- type: dot_ap |
|
value: 78.5701399541226 |
|
- type: dot_f1 |
|
value: 72.38883143743536 |
|
- type: dot_precision |
|
value: 70.95793208312215 |
|
- type: dot_recall |
|
value: 73.87862796833772 |
|
- type: euclidean_accuracy |
|
value: 87.81069321094355 |
|
- type: euclidean_ap |
|
value: 78.57015336777854 |
|
- type: euclidean_f1 |
|
value: 72.38883143743536 |
|
- type: euclidean_precision |
|
value: 70.95793208312215 |
|
- type: euclidean_recall |
|
value: 73.87862796833772 |
|
- type: manhattan_accuracy |
|
value: 87.57227156225785 |
|
- type: manhattan_ap |
|
value: 78.19109731614216 |
|
- type: manhattan_f1 |
|
value: 71.87819856704198 |
|
- type: manhattan_precision |
|
value: 69.77148534525584 |
|
- type: manhattan_recall |
|
value: 74.1160949868074 |
|
- type: max_accuracy |
|
value: 87.81069321094355 |
|
- type: max_ap |
|
value: 78.57015336777854 |
|
- type: max_f1 |
|
value: 72.38883143743536 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.95032405790352 |
|
- type: cos_sim_ap |
|
value: 88.03104739249996 |
|
- type: cos_sim_f1 |
|
value: 80.34377190070451 |
|
- type: cos_sim_precision |
|
value: 77.11534376548892 |
|
- type: cos_sim_recall |
|
value: 83.85432707114259 |
|
- type: dot_accuracy |
|
value: 89.95032405790352 |
|
- type: dot_ap |
|
value: 88.03105328515932 |
|
- type: dot_f1 |
|
value: 80.34377190070451 |
|
- type: dot_precision |
|
value: 77.11534376548892 |
|
- type: dot_recall |
|
value: 83.85432707114259 |
|
- type: euclidean_accuracy |
|
value: 89.95032405790352 |
|
- type: euclidean_ap |
|
value: 88.03105084564575 |
|
- type: euclidean_f1 |
|
value: 80.34377190070451 |
|
- type: euclidean_precision |
|
value: 77.11534376548892 |
|
- type: euclidean_recall |
|
value: 83.85432707114259 |
|
- type: manhattan_accuracy |
|
value: 89.88046726433035 |
|
- type: manhattan_ap |
|
value: 88.01484191858279 |
|
- type: manhattan_f1 |
|
value: 80.34005593993817 |
|
- type: manhattan_precision |
|
value: 76.95290468133108 |
|
- type: manhattan_recall |
|
value: 84.03911302740991 |
|
- type: max_accuracy |
|
value: 89.95032405790352 |
|
- type: max_ap |
|
value: 88.03105328515932 |
|
- type: max_f1 |
|
value: 80.34377190070451 |
|
language: |
|
- en |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
<h1 align="center">Salesforce/SFR-Embedding-2_R</h1> |
|
|
|
**SFR-Embedding by Salesforce Research.** |
|
|
|
The model is for **research purposes only**. |
|
|
|
More technical details will be updated later. Meanwhile, please refer to our previous work [SFR-Embedding](https://blog.salesforceairesearch.com/sfr-embedded-mistral/) for details. |
|
|
|
|
|
SFR-Embedding Team (∗indicates equal contributors, † indicates co-leaders). |
|
* Rui Meng* |
|
* Ye Liu* |
|
* Tong Niu |
|
* Shafiq Rayhan Joty |
|
* Caiming Xiong † |
|
* Yingbo Zhou † |
|
* Semih Yavuz † |
|
|
|
### Citation |
|
```bibtex |
|
@misc{SFR-embedding-2, |
|
title={SFR-Embedding-2: Advanced Text Embedding with Multi-stage Training}, |
|
author={Rui Meng*, Ye Liu*, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, Semih Yavuz}, |
|
year={2024}, |
|
url={https://huggingface.co/Salesforce/SFR-Embedding-2_R} |
|
} |
|
``` |
|
|
|
|
|
## How to run |
|
|
|
#### Transformers |
|
The models can be used as follows: |
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
task = 'Given a web search query, retrieve relevant passages that answer the query' |
|
queries = [ |
|
get_detailed_instruct(task, 'How to bake a chocolate cake'), |
|
get_detailed_instruct(task, 'Symptoms of the flu') |
|
] |
|
# No need to add instruction for retrieval documents |
|
passages = [ |
|
"To bake a delicious chocolate cake, you'll need the following ingredients: all-purpose flour, sugar, cocoa powder, baking powder, baking soda, salt, eggs, milk, vegetable oil, and vanilla extract. Start by preheating your oven to 350°F (175°C). In a mixing bowl, combine the dry ingredients (flour, sugar, cocoa powder, baking powder, baking soda, and salt). In a separate bowl, whisk together the wet ingredients (eggs, milk, vegetable oil, and vanilla extract). Gradually add the wet mixture to the dry ingredients, stirring until well combined. Pour the batter into a greased cake pan and bake for 30-35 minutes. Let it cool before frosting with your favorite chocolate frosting. Enjoy your homemade chocolate cake!", |
|
"The flu, or influenza, is an illness caused by influenza viruses. Common symptoms of the flu include a high fever, chills, cough, sore throat, runny or stuffy nose, body aches, headache, fatigue, and sometimes nausea and vomiting. These symptoms can come on suddenly and are usually more severe than the common cold. It's important to get plenty of rest, stay hydrated, and consult a healthcare professional if you suspect you have the flu. In some cases, antiviral medications can help alleviate symptoms and reduce the duration of the illness." |
|
] |
|
|
|
# load model and tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained('Salesforce/SFR-Embedding-2_R') |
|
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-2_R') |
|
|
|
# get the embeddings |
|
max_length = 4096 |
|
input_texts = queries + passages |
|
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors="pt") |
|
outputs = model(**batch_dict) |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
# [[40.132083892822266, 25.032529830932617], [15.006855010986328, 39.93733215332031]] |
|
``` |
|
|
|
### Sentence Transformers |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model = SentenceTransformer("Salesforce/SFR-Embedding-2_R") |
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
task = 'Given a web search query, retrieve relevant passages that answer the query' |
|
queries = [ |
|
get_detailed_instruct(task, 'How to bake a chocolate cake'), |
|
get_detailed_instruct(task, 'Symptoms of the flu') |
|
] |
|
# No need to add instruction for retrieval documents |
|
passages = [ |
|
"To bake a delicious chocolate cake, you'll need the following ingredients: all-purpose flour, sugar, cocoa powder, baking powder, baking soda, salt, eggs, milk, vegetable oil, and vanilla extract. Start by preheating your oven to 350°F (175°C). In a mixing bowl, combine the dry ingredients (flour, sugar, cocoa powder, baking powder, baking soda, and salt). In a separate bowl, whisk together the wet ingredients (eggs, milk, vegetable oil, and vanilla extract). Gradually add the wet mixture to the dry ingredients, stirring until well combined. Pour the batter into a greased cake pan and bake for 30-35 minutes. Let it cool before frosting with your favorite chocolate frosting. Enjoy your homemade chocolate cake!", |
|
"The flu, or influenza, is an illness caused by influenza viruses. Common symptoms of the flu include a high fever, chills, cough, sore throat, runny or stuffy nose, body aches, headache, fatigue, and sometimes nausea and vomiting. These symptoms can come on suddenly and are usually more severe than the common cold. It's important to get plenty of rest, stay hydrated, and consult a healthcare professional if you suspect you have the flu. In some cases, antiviral medications can help alleviate symptoms and reduce the duration of the illness." |
|
] |
|
|
|
embeddings = model.encode(queries + passages) |
|
scores = model.similarity(embeddings[:2], embeddings[2:]) * 100 |
|
print(scores.tolist()) |
|
# [[40.13203811645508, 25.032546997070312], [15.00684642791748, 39.937339782714844]] |
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|