Sagicc's picture
Update README.md
cbe258b verified
metadata
language:
  - sr
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - espnet/yodas
  - google/fleurs
  - Sagicc/audio-lmb-ds
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Small Sr Yodas
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16_1
          type: mozilla-foundation/common_voice_16_1
          config: sr
          split: test
          args: sr
        metrics:
          - name: Wer
            type: wer
            value: 0.12195981670778992

Whisper Small Sr Yodas

This model is a fine-tuned version of openai/whisper-small on merged datasets Common Voice 16 + Fleurs + Juzne vesti (South news) + LBM + (Yodas)[https://huggingface.co/datasets/espnet/yodas] dataset and

Rupnik, Peter and Ljubešić, Nikola, 2022,
ASR training dataset for Serbian JuzneVesti-SR v1.0, Slovenian language resource repository CLARIN.SI, ISSN 2820-4042,
http://hdl.handle.net/11356/1679.

It achieves the following results on the evaluation set:

  • Loss: 0.3584
  • Wer Ortho: 0.2328
  • Wer: 0.1220

Model description

Added new dataset Yodas as test and experiment to improve results.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.6958 0.49 1000 0.2114 0.2528 0.1563
0.5941 0.98 2000 0.1857 0.2214 0.1269
0.3985 1.46 3000 0.1729 0.2106 0.1167
0.4187 1.95 4000 0.1745 0.2120 0.1147
0.3446 2.44 5000 0.1770 0.2074 0.1139
0.2992 2.93 6000 0.1710 0.2048 0.1061
0.2074 3.42 7000 0.1887 0.2090 0.1123
0.1958 3.91 8000 0.1871 0.2136 0.1131
0.1707 4.39 9000 0.2069 0.2230 0.1126
0.1403 4.88 10000 0.2092 0.2138 0.1110
0.0871 5.37 11000 0.2345 0.2216 0.1161
0.0856 5.86 12000 0.2384 0.2281 0.1161
0.0496 6.35 13000 0.2657 0.2327 0.1211
0.0542 6.84 14000 0.2760 0.2346 0.1198
0.0274 7.32 15000 0.3024 0.2304 0.1218
0.0281 7.81 16000 0.3134 0.2357 0.1216
0.0151 8.3 17000 0.3328 0.2276 0.1188
0.0165 8.79 18000 0.3417 0.2348 0.1220
0.0094 9.28 19000 0.3545 0.2318 0.1221
0.0125 9.77 20000 0.3584 0.2328 0.1220

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.1