Whisper Large v3 cmb
This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 13, Google Fleurs and juzne vesti dataset. It achieves the following results on the evaluation set:
- Loss: 0.1111
- Wer Ortho: 0.1339
- Wer: 0.0415
Model description
Dataset Juzne vesti is published by
Rupnik, Peter and Ljubešić, Nikola, 2022,
ASR training dataset for Serbian JuzneVesti-SR v1.0, Slovenian language resource repository CLARIN.SI, ISSN 2820-4042,
http://hdl.handle.net/11356/1679.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.2766 | 0.48 | 500 | 0.1350 | 0.1670 | 0.0595 |
0.2813 | 0.95 | 1000 | 0.1134 | 0.1426 | 0.0491 |
0.1858 | 1.43 | 1500 | 0.1111 | 0.1339 | 0.0415 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 355
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Sagicc/whisper-large-v3-sr-cmb
Base model
openai/whisper-large-v3