metadata
license: mit
base_model: papluca/xlm-roberta-base-language-detection
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: Roberta-CLS-URL
results: []
Roberta-CLS-URL
This model is a fine-tuned version of papluca/xlm-roberta-base-language-detection on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1817
- Accuracy: 0.9571
- F1: 0.9572
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.14 | 50 | 0.2787 | 0.8943 | 0.8942 |
No log | 0.28 | 100 | 0.2332 | 0.9179 | 0.9180 |
No log | 0.42 | 150 | 0.2369 | 0.9268 | 0.9269 |
No log | 0.56 | 200 | 0.2071 | 0.9313 | 0.9314 |
No log | 0.69 | 250 | 0.2017 | 0.9344 | 0.9343 |
No log | 0.83 | 300 | 0.1953 | 0.9414 | 0.9415 |
No log | 0.97 | 350 | 0.2031 | 0.9394 | 0.9394 |
0.2675 | 1.11 | 400 | 0.1915 | 0.9439 | 0.9439 |
0.2675 | 1.25 | 450 | 0.1696 | 0.9439 | 0.9440 |
0.2675 | 1.39 | 500 | 0.1747 | 0.9487 | 0.9488 |
0.2675 | 1.53 | 550 | 0.1958 | 0.9425 | 0.9427 |
0.2675 | 1.67 | 600 | 0.1608 | 0.9462 | 0.9461 |
0.2675 | 1.81 | 650 | 0.1547 | 0.9523 | 0.9524 |
0.2675 | 1.94 | 700 | 0.1668 | 0.9557 | 0.9557 |
0.1686 | 2.08 | 750 | 0.1709 | 0.9498 | 0.9499 |
0.1686 | 2.22 | 800 | 0.1605 | 0.9554 | 0.9555 |
0.1686 | 2.36 | 850 | 0.1703 | 0.9501 | 0.9501 |
0.1686 | 2.5 | 900 | 0.1603 | 0.9465 | 0.9466 |
0.1686 | 2.64 | 950 | 0.1742 | 0.9451 | 0.9451 |
0.1686 | 2.78 | 1000 | 0.1507 | 0.9546 | 0.9546 |
0.1686 | 2.92 | 1050 | 0.1423 | 0.9557 | 0.9557 |
0.1385 | 3.06 | 1100 | 0.1496 | 0.9574 | 0.9575 |
0.1385 | 3.19 | 1150 | 0.1590 | 0.9549 | 0.9549 |
0.1385 | 3.33 | 1200 | 0.1492 | 0.9523 | 0.9524 |
0.1385 | 3.47 | 1250 | 0.1390 | 0.9565 | 0.9566 |
0.1385 | 3.61 | 1300 | 0.1496 | 0.9529 | 0.9530 |
0.1385 | 3.75 | 1350 | 0.1425 | 0.9551 | 0.9552 |
0.1385 | 3.89 | 1400 | 0.1494 | 0.9521 | 0.9522 |
0.1221 | 4.03 | 1450 | 0.1541 | 0.9557 | 0.9557 |
0.1221 | 4.17 | 1500 | 0.1897 | 0.9532 | 0.9532 |
0.1221 | 4.31 | 1550 | 0.1595 | 0.9518 | 0.9519 |
0.1221 | 4.44 | 1600 | 0.1514 | 0.9554 | 0.9555 |
0.1221 | 4.58 | 1650 | 0.1553 | 0.9554 | 0.9555 |
0.1221 | 4.72 | 1700 | 0.1626 | 0.9543 | 0.9543 |
0.1221 | 4.86 | 1750 | 0.1509 | 0.9523 | 0.9523 |
0.1034 | 5.0 | 1800 | 0.1448 | 0.9554 | 0.9555 |
0.1034 | 5.14 | 1850 | 0.1685 | 0.9574 | 0.9574 |
0.1034 | 5.28 | 1900 | 0.1555 | 0.9551 | 0.9552 |
0.1034 | 5.42 | 1950 | 0.1595 | 0.9557 | 0.9557 |
0.1034 | 5.56 | 2000 | 0.1660 | 0.9565 | 0.9566 |
0.1034 | 5.69 | 2050 | 0.1511 | 0.9554 | 0.9555 |
0.1034 | 5.83 | 2100 | 0.1443 | 0.9565 | 0.9566 |
0.1034 | 5.97 | 2150 | 0.1526 | 0.9554 | 0.9554 |
0.0925 | 6.11 | 2200 | 0.1753 | 0.9540 | 0.9541 |
0.0925 | 6.25 | 2250 | 0.1503 | 0.9557 | 0.9557 |
0.0925 | 6.39 | 2300 | 0.1827 | 0.9518 | 0.9518 |
0.0925 | 6.53 | 2350 | 0.1486 | 0.9568 | 0.9568 |
0.0925 | 6.67 | 2400 | 0.1652 | 0.9568 | 0.9569 |
0.0925 | 6.81 | 2450 | 0.1544 | 0.9537 | 0.9538 |
0.0925 | 6.94 | 2500 | 0.1599 | 0.9551 | 0.9552 |
0.082 | 7.08 | 2550 | 0.1748 | 0.9568 | 0.9569 |
0.082 | 7.22 | 2600 | 0.1765 | 0.9582 | 0.9583 |
0.082 | 7.36 | 2650 | 0.1699 | 0.9568 | 0.9569 |
0.082 | 7.5 | 2700 | 0.1631 | 0.9563 | 0.9563 |
0.082 | 7.64 | 2750 | 0.1759 | 0.9602 | 0.9602 |
0.082 | 7.78 | 2800 | 0.1746 | 0.9565 | 0.9566 |
0.082 | 7.92 | 2850 | 0.1561 | 0.9568 | 0.9569 |
0.0742 | 8.06 | 2900 | 0.1721 | 0.9577 | 0.9577 |
0.0742 | 8.19 | 2950 | 0.1877 | 0.9563 | 0.9563 |
0.0742 | 8.33 | 3000 | 0.1896 | 0.9549 | 0.9549 |
0.0742 | 8.47 | 3050 | 0.1751 | 0.9577 | 0.9577 |
0.0742 | 8.61 | 3100 | 0.1812 | 0.9577 | 0.9577 |
0.0742 | 8.75 | 3150 | 0.1845 | 0.9577 | 0.9577 |
0.0742 | 8.89 | 3200 | 0.1844 | 0.9579 | 0.9580 |
0.0659 | 9.03 | 3250 | 0.1963 | 0.9571 | 0.9571 |
0.0659 | 9.17 | 3300 | 0.1861 | 0.9577 | 0.9577 |
0.0659 | 9.31 | 3350 | 0.1941 | 0.9585 | 0.9586 |
0.0659 | 9.44 | 3400 | 0.1900 | 0.9565 | 0.9566 |
0.0659 | 9.58 | 3450 | 0.1903 | 0.9565 | 0.9566 |
0.0659 | 9.72 | 3500 | 0.1836 | 0.9579 | 0.9580 |
0.0659 | 9.86 | 3550 | 0.1818 | 0.9565 | 0.9566 |
0.0631 | 10.0 | 3600 | 0.1817 | 0.9571 | 0.9572 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2