Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Qwen2-0.5B-KTO - GGUF

Original model description:

base_model: Qwen/Qwen2-0.5B-Instruct datasets: trl-lib/kto-mix-14k library_name: transformers model_name: Qwen2-0.5B-KTO tags: - generated_from_trainer - trl - kto licence: license

Model Card for Qwen2-0.5B-KTO

This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the trl-lib/kto-mix-14k dataset. It has been trained using TRL.

Quick start

from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="qgallouedec/Qwen2-0.5B-KTO", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])

Training procedure

Visualize in Weights & Biases

This model was trained with KTO, a method introduced in KTO: Model Alignment as Prospect Theoretic Optimization.

Framework versions

  • TRL: 0.12.0.dev0
  • Transformers: 4.46.0.dev0
  • Pytorch: 2.4.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citations

Cite KTO as:

@article{ethayarajh2024kto,
    title        = {{KTO: Model Alignment as Prospect Theoretic Optimization}},
    author       = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela},
    year         = 2024,
    eprint       = {arXiv:2402.01306},
}

Cite TRL as:

@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}
Downloads last month
379
GGUF
Model size
494M params
Architecture
qwen2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .