Quantization made by Richard Erkhov.
llama-3-typhoon-v1.5-8b-instruct - GGUF
- Model creator: https://huggingface.co/scb10x/
- Original model: https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct/
Original model description:
license: llama3 language: - en - th pipeline_tag: text-generation tags: - instruct - chat
Llama-3-Typhoon-v1.5-8B: Thai Large Language Model (Instruct)
Llama-3-Typhoon-v1.5-8B-instruct is a instruct Thai 🇹🇭 large language model with 8 billion parameters, and it is based on Llama3-8B.
For release post, please see our blog. *To acknowledge Meta's effort in creating the foundation model and to comply with the license, we explicitly include "llama-3" in the model name.
Model Description
- Model type: A 8B instruct decoder-only model based on Llama architecture.
- Requirement: transformers 4.38.0 or newer.
- Primary Language(s): Thai 🇹🇭 and English 🇬🇧
- License: Llama 3 Community License
Performance
Model | ONET | IC | TGAT | TPAT-1 | A-Level | Average (ThaiExam) | M3Exam | MMLU |
---|---|---|---|---|---|---|---|---|
Typhoon-1.0 (Mistral) | 0.379 | 0.393 | 0.700 | 0.414 | 0.324 | 0.442 | 0.391 | 0.547 |
Typhoon-1.5 8B (Llama3) | 0.446 | 0.431 | 0.722 | 0.526 | 0.407 | 0.506 | 0.460 | 0.614 |
Sailor 7B | 0.372 | 0.379 | 0.678 | 0.405 | 0.396 | 0.446 | 0.411 | 0.553 |
SeaLLM 2.0 7B | 0.327 | 0.311 | 0.656 | 0.414 | 0.321 | 0.406 | 0.354 | 0.579 |
OpenThaiGPT 1.0.0 7B | 0.238 | 0.249 | 0.444 | 0.319 | 0.289 | 0.308 | 0.268 | 0.369 |
SambaLingo-Thai-Chat 7B | 0.251 | 0.241 | 0.522 | 0.302 | 0.262 | 0.316 | 0.309 | 0.388 |
Usage Example
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "scb10x/llama-3-typhoon-v1.5-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a helpful assistant who're always speak Thai."},
{"role": "user", "content": "ขอสูตรไก่ย่าง"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.4,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
Chat Template
We use llama3 chat-template.
{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}
Intended Uses & Limitations
This model is an instructional model. However, it’s still undergoing development. It incorporates some level of guardrails, but it still may produce answers that are inaccurate, biased, or otherwise objectionable in response to user prompts. We recommend that developers assess these risks in the context of their use case.
Follow us
https://twitter.com/opentyphoon
Support
SCB10X AI Team
- Kunat Pipatanakul, Potsawee Manakul, Sittipong Sripaisarnmongkol, Natapong Nitarach, Pathomporn Chokchainant, Kasima Tharnpipitchai
- If you find Typhoon-8B useful for your work, please cite it using:
@article{pipatanakul2023typhoon,
title={Typhoon: Thai Large Language Models},
author={Kunat Pipatanakul and Phatrasek Jirabovonvisut and Potsawee Manakul and Sittipong Sripaisarnmongkol and Ruangsak Patomwong and Pathomporn Chokchainant and Kasima Tharnpipitchai},
year={2023},
journal={arXiv preprint arXiv:2312.13951},
url={https://arxiv.org/abs/2312.13951}
}
Contact Us
- General & Collaboration: [email protected], [email protected]
- Technical: [email protected]
- Downloads last month
- 433