Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Helion-4x34B - GGUF

Name Quant method Size
Helion-4x34B.Q2_K.gguf Q2_K 38.68GB
Helion-4x34B.Q3_K_S.gguf Q3_K_S 45.66GB
Helion-4x34B.Q3_K.gguf Q3_K 50.66GB
Helion-4x34B.Q3_K_M.gguf Q3_K_M 50.66GB
Helion-4x34B.Q3_K_L.gguf Q3_K_L 54.97GB
Helion-4x34B.IQ4_XS.gguf IQ4_XS 57.03GB
Helion-4x34B.Q4_0.gguf Q4_0 59.66GB
Helion-4x34B.IQ4_NL.gguf IQ4_NL 60.19GB
Helion-4x34B.Q4_K_S.gguf Q4_K_S 60.15GB
Helion-4x34B.Q4_K.gguf Q4_K 63.95GB
Helion-4x34B.Q4_K_M.gguf Q4_K_M 63.95GB
Helion-4x34B.Q4_1.gguf Q4_1 66.25GB
Helion-4x34B.Q5_0.gguf Q5_0 72.84GB
Helion-4x34B.Q5_K_S.gguf Q5_K_S 72.84GB
Helion-4x34B.Q5_K.gguf Q5_K 75.05GB
Helion-4x34B.Q5_K_M.gguf Q5_K_M 75.05GB
Helion-4x34B.Q5_1.gguf Q5_1 79.43GB
Helion-4x34B.Q6_K.gguf Q6_K 86.84GB
Helion-4x34B.Q8_0.gguf Q8_0 112.48GB

Original model description:

license: other tags: - yi - moe license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE model-index: - name: Helion-4x34B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.71 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.28 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.33 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.91 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard

image/jpeg

Helion-4x34B

This is the model for Helion-4x34B. I used this repo to make this MOE model.

Prompt Template(s):

Since bagel-dpo-34b-v0.2 uses many prompt templates, you can utilize prompt templates provided by bagel and other expert's prompt templates.

Note: I currently do not know which prompt template is best.

ChatML:

<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>

Human Asistant

Human: {user}

### Assistant: {asistant}

Alpaca (sort of)

Below is an instruction that describes a task.  Write a response that appropriately completes the request.

### Instruction:
{system}
{instruction}

### Response:

Vicuna

{system}
USER: {instruction}
ASSISTANT: 

Visit bagel-dpo-34b-v0.2 to try more prompt templates.

Yaml Config to reproduce

base_model: nontoxic-bagel-34b-v0.2
gate_mode: hidden
dtype: bfloat16

experts:
  - source_model: bagel-dpo-34b-v0.2
    positive_prompts: ["question answering", "Q:", science", "biology", "chemistry", "physics"]
    negative_prompts: ["math", "reason", "mathematics", "solve", "count", "code", "python", "javascript", "programming", "algorithm"]

  - source_model: Nous-Hermes-2-Yi-34B
    positive_prompts: ["chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"]

  - source_model: SUS-Chat-34B
    positive_prompts: ["math", "reason", "mathematics", "solve", "count", "assistant"]

  - source_model: platypus-yi-34b
    positive_prompts: [""]
    negative_prompts: ["math", "reason", "mathematics", "solve", "count"]

Quantizationed versions

Quantizationed versions of this model is available thanks to TheBloke.

GPTQ
GGUF
AWQ

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.48
AI2 Reasoning Challenge (25-Shot) 69.71
HellaSwag (10-Shot) 85.28
MMLU (5-Shot) 77.33
TruthfulQA (0-shot) 63.91
Winogrande (5-shot) 84.37
GSM8k (5-shot) 72.25

If you would like to support me:

☕ Buy Me a Coffee

Downloads last month
223
GGUF
Model size
114B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .