YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
Helion-4x34B - GGUF
- Model creator: https://huggingface.co/Weyaxi/
- Original model: https://huggingface.co/Weyaxi/Helion-4x34B/
Name | Quant method | Size |
---|---|---|
Helion-4x34B.Q2_K.gguf | Q2_K | 38.68GB |
Helion-4x34B.Q3_K_S.gguf | Q3_K_S | 45.66GB |
Helion-4x34B.Q3_K.gguf | Q3_K | 50.66GB |
Helion-4x34B.Q3_K_M.gguf | Q3_K_M | 50.66GB |
Helion-4x34B.Q3_K_L.gguf | Q3_K_L | 54.97GB |
Helion-4x34B.IQ4_XS.gguf | IQ4_XS | 57.03GB |
Helion-4x34B.Q4_0.gguf | Q4_0 | 59.66GB |
Helion-4x34B.IQ4_NL.gguf | IQ4_NL | 60.19GB |
Helion-4x34B.Q4_K_S.gguf | Q4_K_S | 60.15GB |
Helion-4x34B.Q4_K.gguf | Q4_K | 63.95GB |
Helion-4x34B.Q4_K_M.gguf | Q4_K_M | 63.95GB |
Helion-4x34B.Q4_1.gguf | Q4_1 | 66.25GB |
Helion-4x34B.Q5_0.gguf | Q5_0 | 72.84GB |
Helion-4x34B.Q5_K_S.gguf | Q5_K_S | 72.84GB |
Helion-4x34B.Q5_K.gguf | Q5_K | 75.05GB |
Helion-4x34B.Q5_K_M.gguf | Q5_K_M | 75.05GB |
Helion-4x34B.Q5_1.gguf | Q5_1 | 79.43GB |
Helion-4x34B.Q6_K.gguf | Q6_K | 86.84GB |
Helion-4x34B.Q8_0.gguf | Q8_0 | 112.48GB |
Original model description:
license: other tags: - yi - moe license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE model-index: - name: Helion-4x34B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.71 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.28 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.33 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.91 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard
Helion-4x34B
This is the model for Helion-4x34B. I used this repo to make this MOE model.
Prompt Template(s):
Since bagel-dpo-34b-v0.2 uses many prompt templates, you can utilize prompt templates provided by bagel and other expert's prompt templates.
Note: I currently do not know which prompt template is best.
ChatML:
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
Human Asistant
Human: {user}
### Assistant: {asistant}
Alpaca (sort of)
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{system}
{instruction}
### Response:
Vicuna
{system}
USER: {instruction}
ASSISTANT:
Visit bagel-dpo-34b-v0.2 to try more prompt templates.
Yaml Config to reproduce
base_model: nontoxic-bagel-34b-v0.2
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: bagel-dpo-34b-v0.2
positive_prompts: ["question answering", "Q:", science", "biology", "chemistry", "physics"]
negative_prompts: ["math", "reason", "mathematics", "solve", "count", "code", "python", "javascript", "programming", "algorithm"]
- source_model: Nous-Hermes-2-Yi-34B
positive_prompts: ["chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"]
- source_model: SUS-Chat-34B
positive_prompts: ["math", "reason", "mathematics", "solve", "count", "assistant"]
- source_model: platypus-yi-34b
positive_prompts: [""]
negative_prompts: ["math", "reason", "mathematics", "solve", "count"]
Quantizationed versions
Quantizationed versions of this model is available thanks to TheBloke.
GPTQ
GGUF
AWQ
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.48 |
AI2 Reasoning Challenge (25-Shot) | 69.71 |
HellaSwag (10-Shot) | 85.28 |
MMLU (5-Shot) | 77.33 |
TruthfulQA (0-shot) | 63.91 |
Winogrande (5-shot) | 84.37 |
GSM8k (5-shot) | 72.25 |
If you would like to support me:
- Downloads last month
- 223