YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
Excalibur-7b-DPO - GGUF
- Model creator: https://huggingface.co/InferenceIllusionist/
- Original model: https://huggingface.co/InferenceIllusionist/Excalibur-7b-DPO/
Name | Quant method | Size |
---|---|---|
Excalibur-7b-DPO.Q2_K.gguf | Q2_K | 2.53GB |
Excalibur-7b-DPO.IQ3_XS.gguf | IQ3_XS | 2.81GB |
Excalibur-7b-DPO.IQ3_S.gguf | IQ3_S | 2.96GB |
Excalibur-7b-DPO.Q3_K_S.gguf | Q3_K_S | 2.95GB |
Excalibur-7b-DPO.IQ3_M.gguf | IQ3_M | 3.06GB |
Excalibur-7b-DPO.Q3_K.gguf | Q3_K | 3.28GB |
Excalibur-7b-DPO.Q3_K_M.gguf | Q3_K_M | 3.28GB |
Excalibur-7b-DPO.Q3_K_L.gguf | Q3_K_L | 3.56GB |
Excalibur-7b-DPO.IQ4_XS.gguf | IQ4_XS | 3.67GB |
Excalibur-7b-DPO.Q4_0.gguf | Q4_0 | 3.83GB |
Excalibur-7b-DPO.IQ4_NL.gguf | IQ4_NL | 3.87GB |
Excalibur-7b-DPO.Q4_K_S.gguf | Q4_K_S | 3.86GB |
Excalibur-7b-DPO.Q4_K.gguf | Q4_K | 4.07GB |
Excalibur-7b-DPO.Q4_K_M.gguf | Q4_K_M | 4.07GB |
Excalibur-7b-DPO.Q4_1.gguf | Q4_1 | 4.24GB |
Excalibur-7b-DPO.Q5_0.gguf | Q5_0 | 4.65GB |
Excalibur-7b-DPO.Q5_K_S.gguf | Q5_K_S | 4.65GB |
Excalibur-7b-DPO.Q5_K.gguf | Q5_K | 4.78GB |
Excalibur-7b-DPO.Q5_K_M.gguf | Q5_K_M | 4.78GB |
Excalibur-7b-DPO.Q5_1.gguf | Q5_1 | 5.07GB |
Excalibur-7b-DPO.Q6_K.gguf | Q6_K | 5.53GB |
Excalibur-7b-DPO.Q8_0.gguf | Q8_0 | 7.17GB |
Original model description:
license: apache-2.0 library_name: transformers tags: - finetune - dpo - chatml base_model: - InferenceIllusionist/Excalibur-7b datasets: - Intel/orca_dpo_pairs model-index: - name: Excalibur-7b-DPO results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.93 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.46 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 70.82 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard
Excalibur-7b-DPO
An initial foray into the world of fine-tuning. The goal of this release was to amplify the quality of the original model's responses, in particular for vision use cases*
Weighted (Importance Matrix) Quants available here
Static (Legacy) quants available here
Notes & Methodology
- Excalibur-7b fine-tuned with Direct Preference Optimization (DPO) using Intel/orca_dpo_pairs
- This is a quick experiment to determine the impact of DPO finetuning on the Excelsior-7b base model
- Ran for a little over an hour on a single A100
- Fine-tuning succeeded in making model conversational and more well-rounded
- Benchmark scores increased in the following categories versus base Excelsior-7b:
- ARC: 69.71 -> 70.9
- HellaSwag: 87.56 -> 87.93
- TruthfulQA: 67.24 -> 70.82
- Average: 73.6 -> 73.84
- Precision: bfloat16
Sample Question - Vision
*Requires additional mmproj file. You have two options for vision functionality (available inside this repo):
Select the gguf file of your choice in Koboldcpp as usual, then make sure to choose the mmproj file above in the LLaVA mmproj field of the model submenu:
Prompt Format
- For best results please use ChatML for the prompt format. Alpaca may also work.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 73.84 |
AI2 Reasoning Challenge (25-Shot) | 70.90 |
HellaSwag (10-Shot) | 87.93 |
MMLU (5-Shot) | 65.46 |
TruthfulQA (0-shot) | 70.82 |
Winogrande (5-shot) | 82.48 |
GSM8k (5-shot) | 65.43 |
- Downloads last month
- 205