Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Excalibur-7b-DPO - GGUF

Original model description:

license: apache-2.0 library_name: transformers tags: - finetune - dpo - chatml base_model: - InferenceIllusionist/Excalibur-7b datasets: - Intel/orca_dpo_pairs model-index: - name: Excalibur-7b-DPO results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.93 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.46 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 70.82 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO name: Open LLM Leaderboard

Excalibur-7b-DPO

An initial foray into the world of fine-tuning. The goal of this release was to amplify the quality of the original model's responses, in particular for vision use cases*

Weighted (Importance Matrix) Quants available here

Static (Legacy) quants available here

Notes & Methodology

  • Excalibur-7b fine-tuned with Direct Preference Optimization (DPO) using Intel/orca_dpo_pairs
  • This is a quick experiment to determine the impact of DPO finetuning on the Excelsior-7b base model
  • Ran for a little over an hour on a single A100
  • Fine-tuning succeeded in making model conversational and more well-rounded
  • Benchmark scores increased in the following categories versus base Excelsior-7b:
    • ARC: 69.71 -> 70.9
    • HellaSwag: 87.56 -> 87.93
    • TruthfulQA: 67.24 -> 70.82
    • Average: 73.6 -> 73.84
  • Precision: bfloat16

Sample Question - Vision

*Requires additional mmproj file. You have two options for vision functionality (available inside this repo):

Select the gguf file of your choice in Koboldcpp as usual, then make sure to choose the mmproj file above in the LLaVA mmproj field of the model submenu:

Prompt Format

  • For best results please use ChatML for the prompt format. Alpaca may also work.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 73.84
AI2 Reasoning Challenge (25-Shot) 70.90
HellaSwag (10-Shot) 87.93
MMLU (5-Shot) 65.46
TruthfulQA (0-shot) 70.82
Winogrande (5-shot) 82.48
GSM8k (5-shot) 65.43
Downloads last month
205
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .