Upload 6 files
#2
by
Chat-Error
- opened
- export_hf_checkpoint.py +55 -0
- merge_percentage.py +112 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +33 -0
export_hf_checkpoint.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import transformers
|
5 |
+
from peft import PeftModel
|
6 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402
|
7 |
+
|
8 |
+
BASE_MODEL = os.environ.get("BASE_MODEL", None)
|
9 |
+
assert (
|
10 |
+
BASE_MODEL
|
11 |
+
), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=huggyllama/llama-7b`" # noqa: E501
|
12 |
+
|
13 |
+
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
14 |
+
|
15 |
+
base_model = LlamaForCausalLM.from_pretrained(
|
16 |
+
BASE_MODEL,
|
17 |
+
load_in_8bit=False,
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
device_map={"": "cpu"},
|
20 |
+
)
|
21 |
+
|
22 |
+
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
|
23 |
+
first_weight_old = first_weight.clone()
|
24 |
+
|
25 |
+
lora_model = PeftModel.from_pretrained(
|
26 |
+
base_model,
|
27 |
+
"serpdotai/llama-oasst-lora-13B",
|
28 |
+
device_map={"": "cpu"},
|
29 |
+
torch_dtype=torch.float16,
|
30 |
+
)
|
31 |
+
|
32 |
+
lora_weight = lora_model.base_model.model.model.layers[
|
33 |
+
0
|
34 |
+
].self_attn.q_proj.weight
|
35 |
+
|
36 |
+
assert torch.allclose(first_weight_old, first_weight)
|
37 |
+
|
38 |
+
# merge weights - new merging method from peft
|
39 |
+
lora_model = lora_model.merge_and_unload()
|
40 |
+
|
41 |
+
lora_model.train(False)
|
42 |
+
|
43 |
+
# did we do anything?
|
44 |
+
assert not torch.allclose(first_weight_old, first_weight)
|
45 |
+
|
46 |
+
lora_model_sd = lora_model.state_dict()
|
47 |
+
deloreanized_sd = {
|
48 |
+
k.replace("base_model.model.", ""): v
|
49 |
+
for k, v in lora_model_sd.items()
|
50 |
+
if "lora" not in k
|
51 |
+
}
|
52 |
+
|
53 |
+
LlamaForCausalLM.save_pretrained(
|
54 |
+
base_model, "./hf_ckpt", state_dict=deloreanized_sd, max_shard_size="400MB"
|
55 |
+
)
|
merge_percentage.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
print("Starting script, plese wait...")
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import shutil
|
5 |
+
import json
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
7 |
+
from tkinter.filedialog import askdirectory, askopenfilename
|
8 |
+
|
9 |
+
# Rubbish experiment by Concedo for KoboldAI usage
|
10 |
+
# Experimenting with the ability to blend weights from 2 LLMs of the same architecture
|
11 |
+
# Both models must have the same architecture, number of parameters, layer counts and types, and use the same vocab.
|
12 |
+
|
13 |
+
#mixer output settings
|
14 |
+
blend_ratio = 0.2 #setting to 0 gives first model, and 1 gives second model
|
15 |
+
fp16 = False #perform operations in fp16. Saves memory, but CPU inference will not be possible.
|
16 |
+
always_output_fp16 = True #if true, will output fp16 even if operating in fp32
|
17 |
+
max_shard_size = "2000MiB" #set output shard size
|
18 |
+
verbose_info = True #will show model information when loading
|
19 |
+
force_cpu = True #only use cpu
|
20 |
+
load_sharded = True #load both models shard by shard
|
21 |
+
|
22 |
+
#test generation settings, only for fp32
|
23 |
+
deterministic_test = True #determines if outputs are always the same
|
24 |
+
test_prompt = "Test, " #test prompt for generation. only for fp32. set to empty string to skip generating.
|
25 |
+
test_max_length = 32 #test generation length
|
26 |
+
|
27 |
+
|
28 |
+
blend_ratio_b = 1.0 - blend_ratio
|
29 |
+
|
30 |
+
def get_model_info(model):
|
31 |
+
with torch.no_grad():
|
32 |
+
outfo = ""
|
33 |
+
cntent = 0
|
34 |
+
outfo += "\n==============================\n"
|
35 |
+
for name, para in model.named_parameters():
|
36 |
+
cntent += 1
|
37 |
+
outfo += ('{}: {}'.format(name, para.shape))+"\n"
|
38 |
+
outfo += ("Num Entries: " + str(cntent))+"\n"
|
39 |
+
outfo += ("==============================\n")
|
40 |
+
return outfo
|
41 |
+
|
42 |
+
def merge_models(model1,model2):
|
43 |
+
with torch.no_grad():
|
44 |
+
tensornum = 0
|
45 |
+
for p1, p2 in zip(model1.parameters(), model2.parameters()):
|
46 |
+
p1 *= blend_ratio
|
47 |
+
p2 *= blend_ratio_b
|
48 |
+
p1 += p2
|
49 |
+
#print(p1)
|
50 |
+
#print(p2)
|
51 |
+
tensornum += 1
|
52 |
+
if verbose_info:
|
53 |
+
print("Merging tensor "+str(tensornum))
|
54 |
+
pass
|
55 |
+
|
56 |
+
def read_index_filenames(sourcedir):
|
57 |
+
index = json.load(open(sourcedir + '/pytorch_model.bin.index.json','rt'))
|
58 |
+
fl = []
|
59 |
+
for k,v in index['weight_map'].items():
|
60 |
+
if v not in fl:
|
61 |
+
fl.append(v)
|
62 |
+
return fl
|
63 |
+
|
64 |
+
print("Opening file dialog, please select FIRST model directory...")
|
65 |
+
model_path1 = askdirectory(title="Select Directory of FIRST model to merge")
|
66 |
+
print("Opening file dialog, please select SECOND model directory...")
|
67 |
+
model_path2 = askdirectory(title="Select Directory of SECOND model to merge")
|
68 |
+
print("Opening file dialog, please select OUTPUT model directory...")
|
69 |
+
model_path3 = askdirectory(title="Select Output Directory of merged model")
|
70 |
+
if not model_path1 or not model_path2:
|
71 |
+
print("\nYou must select two directories containing models to merge and one output directory. Exiting.")
|
72 |
+
exit()
|
73 |
+
|
74 |
+
with torch.no_grad():
|
75 |
+
if fp16:
|
76 |
+
torch.set_default_dtype(torch.float16)
|
77 |
+
else:
|
78 |
+
torch.set_default_dtype(torch.float32)
|
79 |
+
|
80 |
+
device = torch.device("cuda") if (torch.cuda.is_available() and not force_cpu) else torch.device("cpu")
|
81 |
+
print(device)
|
82 |
+
|
83 |
+
|
84 |
+
print("Loading Model 1...")
|
85 |
+
model1 = AutoModelForCausalLM.from_pretrained(model_path1, torch_dtype='auto') #,torch_dtype=torch.float16
|
86 |
+
model1 = model1.to(device)
|
87 |
+
model1.eval()
|
88 |
+
print("Model 1 Loaded. Dtype: " + str(model1.dtype))
|
89 |
+
print("Loading Model 2...")
|
90 |
+
model2 = AutoModelForCausalLM.from_pretrained(model_path2, torch_dtype='auto') #,torch_dtype=torch.float16
|
91 |
+
model2 = model2.to(device)
|
92 |
+
model2.eval()
|
93 |
+
print("Model 2 Loaded. Dtype: " + str(model2.dtype))
|
94 |
+
|
95 |
+
#ensure both models have the exact same layout
|
96 |
+
m1_info = get_model_info(model1)
|
97 |
+
m2_info = get_model_info(model2)
|
98 |
+
|
99 |
+
print("Merging models...")
|
100 |
+
merge_models(model1,model2)
|
101 |
+
|
102 |
+
if model_path3:
|
103 |
+
print("Saving new model...")
|
104 |
+
newsavedpath = model_path3+"/converted_model"
|
105 |
+
if always_output_fp16 and not fp16:
|
106 |
+
model1.half()
|
107 |
+
model1.save_pretrained(newsavedpath, max_shard_size=max_shard_size)
|
108 |
+
print("\nSaved to: " + newsavedpath)
|
109 |
+
else:
|
110 |
+
print("\nOutput model was not saved as no output path was selected.")
|
111 |
+
|
112 |
+
print("\nScript Completed.")
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"model_max_length": 2048,
|
22 |
+
"pad_token": null,
|
23 |
+
"sp_model_kwargs": {},
|
24 |
+
"tokenizer_class": "LlamaTokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<unk>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|