See axolotl config
axolotl version: 0.4.0
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: RemVdH/databricks-dolly-3k
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
hub_model_id: RemVdH/test-model-ft-tinylama
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
test-model-ft-tinylama
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7487
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9375 | 0.0465 | 1 | 2.1187 |
1.9299 | 0.2791 | 6 | 2.0168 |
1.825 | 0.5581 | 12 | 1.8114 |
1.7291 | 0.8372 | 18 | 1.7892 |
1.7519 | 1.1047 | 24 | 1.7811 |
1.8679 | 1.3837 | 30 | 1.7753 |
1.6452 | 1.6628 | 36 | 1.7567 |
1.7842 | 1.9419 | 42 | 1.7574 |
1.6599 | 2.1977 | 48 | 1.7538 |
1.6158 | 2.4767 | 54 | 1.7543 |
1.7082 | 2.7558 | 60 | 1.7560 |
1.7263 | 3.0116 | 66 | 1.7518 |
1.8113 | 3.2907 | 72 | 1.7511 |
1.6883 | 3.5698 | 78 | 1.7497 |
1.7864 | 3.8488 | 84 | 1.7487 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0