Hikari Noob v-pred 0.5
Civitai model page: https://civitai.com/models/938672
Fine-tuned NoobAI-XL(v-prediction) and merged SPO LoRA
NoobAI-XL(v-prediction)をファインチューンし、SPOをマージしました。
日本語での導入手順はページ下部にあります。
Features/特徴
- Improved stability and quality.
- Works with samplers other than Euler.
- Good results with only 10 steps (12 steps or more recommended)
- Fixed a problem in which the quality of output was significantly degraded when the number of tokens exceeded 76.
- The base style is not strong and can be restyled by prompts or LoRAs.
- 安定性と品質を改善
- わずか10ステップでよい結果を得られます(ただし12ステップ以上を推奨)
- Zero Terminal SNRの代わりにNoise Offsetを使用することでEuler以外のサンプラーでも利用できるようにしました。
- トークン数が76を超えると出力の品質が著しく低下する問題を修正しました。
- 素の画風は強くないので、プロンプトやLoRAによる画風変更ができます。
Requirements / 動作要件
- AUTOMATIC1111 WebUI on
dev
branch / devブランチ上のAUTOMATIC1111 WebUI - Latest version of ComfyUI / 最新版のComfyUI
- ReForge on
dev_upstream_experimental
branch /dev_upstream_experimental
ブランチ上のreForge
Instruction for AUTOMATIC1111
- Download the model
- Switch branch to
dev
- Load the model
Instruction for reForge
- Download the model
- Switch branch to
dev_upstream_experimental
- Find “Advanced Model Sampling for Forge” at the bottom of the page
- Enable “Enable Advanced Model Sampling”
- Select
v_prediction
in Discrete Sampling Type
Example Workflow for ComfyUI / ComfyUIサンプルワークフロー
Download it from here
Prompt Guidelines / プロンプト記法
Almost same as the base model/ベースモデルとおおむね同じ
To improve the quality of background, add simple background, transparent background
to Negative Prompt.
Recommended Prompt / 推奨プロンプト
Positive: None/無し(Works good without masterpiece, best quality
/ masterpiece, best quality
無しでおk)
Negative: worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, photoshop \(medium\), abstract
or empty(または無し)
Recommended Settings / 推奨設定
Steps: 10-24
Sampler: DPM++ 2M(dpmpp_2m)
Scheduler: Simple
Guidance Scale: 3.5-7
Hires.fix
Hires upscaler: 4x-UltraSharp or Latent(nearest-exact)
Denoising strength: 0.4-0.5(0.65-0.7 for latent)
Merge recipe(Weighted sum)
I made 6 Illustrious-based models and merged them.
Stage 0: finetunes v-pred test model with AI-generated images
Stage 1: finetunes stage 0 model with 300 scenery images from Gelbooru
Stage 2: Finetune and merge(see below)
*A-F,sd15: finetuned stage1(ReLoRA)
- A * 0.6 + B * 0.4 = tmp1
- tmp1 * 0.6 + C * 0.4 = tmp2
- tmp2 * 0.7 + F * 0.3 = tmp3
- tmp3 * 0.7 + E * 0.3 = tmp4
- tmp4 * 0.5 + D * 0.5 = tmp5
- tmp5 * 0.65 + sd15 * 0.35 = tmp6
- tmp6 + SPO LoRA = Result
Training scripts:
Notice
This model is licensed under Fair AI Public License 1.0-SD
If you make modify this model, you must share both your changes and the original license.
You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.
AUTOMATIC1111の導入手順
- モデルをダウンロードする。
- devブランチに切り替える(ブランチの切り替えかたは各自調べてください)。
- モデルを読み込む。
ReForgeの導入手順
dev_upstream_experimental
ブランチに切り替える- モデルをダウンロードする。
- WebUIのページ下部から“Advanced Model Sampling for Forge”を見つける
- “Enable Advanced Model Sampling”を有効にする
- Discrete Sampling Typeを
v_prediction
にする