distilhubert-finetuned-gtzan-2
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.9149
- Accuracy: 0.83
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0823 | 1.0 | 113 | 2.0903 | 0.46 |
1.5111 | 2.0 | 226 | 1.5342 | 0.6 |
1.2342 | 3.0 | 339 | 1.1036 | 0.68 |
0.8352 | 4.0 | 452 | 0.9137 | 0.78 |
0.5727 | 5.0 | 565 | 0.6258 | 0.81 |
0.3957 | 6.0 | 678 | 0.5984 | 0.83 |
0.1851 | 7.0 | 791 | 0.6269 | 0.82 |
0.1607 | 8.0 | 904 | 0.6945 | 0.79 |
0.1426 | 9.0 | 1017 | 0.6103 | 0.86 |
0.0519 | 10.0 | 1130 | 0.7502 | 0.81 |
0.0097 | 11.0 | 1243 | 0.7101 | 0.85 |
0.006 | 12.0 | 1356 | 0.8174 | 0.82 |
0.0039 | 13.0 | 1469 | 0.8008 | 0.84 |
0.0032 | 14.0 | 1582 | 0.8438 | 0.81 |
0.0027 | 15.0 | 1695 | 0.8206 | 0.82 |
0.0024 | 16.0 | 1808 | 0.8563 | 0.82 |
0.002 | 17.0 | 1921 | 0.8884 | 0.82 |
0.0018 | 18.0 | 2034 | 0.9148 | 0.82 |
0.0018 | 19.0 | 2147 | 0.9017 | 0.83 |
0.0016 | 20.0 | 2260 | 0.9178 | 0.83 |
0.0015 | 21.0 | 2373 | 0.9070 | 0.83 |
0.0014 | 22.0 | 2486 | 0.9033 | 0.83 |
0.0014 | 23.0 | 2599 | 0.8975 | 0.84 |
0.0013 | 24.0 | 2712 | 0.9160 | 0.83 |
0.0013 | 25.0 | 2825 | 0.9149 | 0.83 |
Framework versions
- Transformers 4.29.0
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.