.gitattributes CHANGED
@@ -33,4 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- assets/wanx_colorful_black.png filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
37
+ *.gif filter=lfs diff=lfs merge=lfs -text
LICENSE CHANGED
@@ -9,7 +9,7 @@ By clicking to agree or by using or distributing any portion or element of the T
9
  b. "We"(or "Us") shall mean Alibaba Cloud.
10
  c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
  d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
12
- e. "Tongyi Qianwen" shall mean the large language models (including Qwen model and Qwen-Chat model), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
13
  f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
14
  g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
  h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
 
9
  b. "We"(or "Us") shall mean Alibaba Cloud.
10
  c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
  d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
12
+ e. "Tongyi Qianwen" shall mean the large language models (including Qwen-7B model and Qwen-7B-Chat model), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
13
  f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
14
  g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
  h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
NOTICE CHANGED
@@ -49,232 +49,4 @@ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
49
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
50
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
51
  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
52
- SOFTWARE.
53
-
54
- ------------- LICENSE FOR stanford_alpaca code --------------
55
-
56
- Apache License
57
- Version 2.0, January 2004
58
- http://www.apache.org/licenses/
59
-
60
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
61
-
62
- 1. Definitions.
63
-
64
- "License" shall mean the terms and conditions for use, reproduction,
65
- and distribution as defined by Sections 1 through 9 of this document.
66
-
67
- "Licensor" shall mean the copyright owner or entity authorized by
68
- the copyright owner that is granting the License.
69
-
70
- "Legal Entity" shall mean the union of the acting entity and all
71
- other entities that control, are controlled by, or are under common
72
- control with that entity. For the purposes of this definition,
73
- "control" means (i) the power, direct or indirect, to cause the
74
- direction or management of such entity, whether by contract or
75
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
76
- outstanding shares, or (iii) beneficial ownership of such entity.
77
-
78
- "You" (or "Your") shall mean an individual or Legal Entity
79
- exercising permissions granted by this License.
80
-
81
- "Source" form shall mean the preferred form for making modifications,
82
- including but not limited to software source code, documentation
83
- source, and configuration files.
84
-
85
- "Object" form shall mean any form resulting from mechanical
86
- transformation or translation of a Source form, including but
87
- not limited to compiled object code, generated documentation,
88
- and conversions to other media types.
89
-
90
- "Work" shall mean the work of authorship, whether in Source or
91
- Object form, made available under the License, as indicated by a
92
- copyright notice that is included in or attached to the work
93
- (an example is provided in the Appendix below).
94
-
95
- "Derivative Works" shall mean any work, whether in Source or Object
96
- form, that is based on (or derived from) the Work and for which the
97
- editorial revisions, annotations, elaborations, or other modifications
98
- represent, as a whole, an original work of authorship. For the purposes
99
- of this License, Derivative Works shall not include works that remain
100
- separable from, or merely link (or bind by name) to the interfaces of,
101
- the Work and Derivative Works thereof.
102
-
103
- "Contribution" shall mean any work of authorship, including
104
- the original version of the Work and any modifications or additions
105
- to that Work or Derivative Works thereof, that is intentionally
106
- submitted to Licensor for inclusion in the Work by the copyright owner
107
- or by an individual or Legal Entity authorized to submit on behalf of
108
- the copyright owner. For the purposes of this definition, "submitted"
109
- means any form of electronic, verbal, or written communication sent
110
- to the Licensor or its representatives, including but not limited to
111
- communication on electronic mailing lists, source code control systems,
112
- and issue tracking systems that are managed by, or on behalf of, the
113
- Licensor for the purpose of discussing and improving the Work, but
114
- excluding communication that is conspicuously marked or otherwise
115
- designated in writing by the copyright owner as "Not a Contribution."
116
-
117
- "Contributor" shall mean Licensor and any individual or Legal Entity
118
- on behalf of whom a Contribution has been received by Licensor and
119
- subsequently incorporated within the Work.
120
-
121
- 2. Grant of Copyright License. Subject to the terms and conditions of
122
- this License, each Contributor hereby grants to You a perpetual,
123
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
124
- copyright license to reproduce, prepare Derivative Works of,
125
- publicly display, publicly perform, sublicense, and distribute the
126
- Work and such Derivative Works in Source or Object form.
127
-
128
- 3. Grant of Patent License. Subject to the terms and conditions of
129
- this License, each Contributor hereby grants to You a perpetual,
130
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
131
- (except as stated in this section) patent license to make, have made,
132
- use, offer to sell, sell, import, and otherwise transfer the Work,
133
- where such license applies only to those patent claims licensable
134
- by such Contributor that are necessarily infringed by their
135
- Contribution(s) alone or by combination of their Contribution(s)
136
- with the Work to which such Contribution(s) was submitted. If You
137
- institute patent litigation against any entity (including a
138
- cross-claim or counterclaim in a lawsuit) alleging that the Work
139
- or a Contribution incorporated within the Work constitutes direct
140
- or contributory patent infringement, then any patent licenses
141
- granted to You under this License for that Work shall terminate
142
- as of the date such litigation is filed.
143
-
144
- 4. Redistribution. You may reproduce and distribute copies of the
145
- Work or Derivative Works thereof in any medium, with or without
146
- modifications, and in Source or Object form, provided that You
147
- meet the following conditions:
148
-
149
- (a) You must give any other recipients of the Work or
150
- Derivative Works a copy of this License; and
151
-
152
- (b) You must cause any modified files to carry prominent notices
153
- stating that You changed the files; and
154
-
155
- (c) You must retain, in the Source form of any Derivative Works
156
- that You distribute, all copyright, patent, trademark, and
157
- attribution notices from the Source form of the Work,
158
- excluding those notices that do not pertain to any part of
159
- the Derivative Works; and
160
-
161
- (d) If the Work includes a "NOTICE" text file as part of its
162
- distribution, then any Derivative Works that You distribute must
163
- include a readable copy of the attribution notices contained
164
- within such NOTICE file, excluding those notices that do not
165
- pertain to any part of the Derivative Works, in at least one
166
- of the following places: within a NOTICE text file distributed
167
- as part of the Derivative Works; within the Source form or
168
- documentation, if provided along with the Derivative Works; or,
169
- within a display generated by the Derivative Works, if and
170
- wherever such third-party notices normally appear. The contents
171
- of the NOTICE file are for informational purposes only and
172
- do not modify the License. You may add Your own attribution
173
- notices within Derivative Works that You distribute, alongside
174
- or as an addendum to the NOTICE text from the Work, provided
175
- that such additional attribution notices cannot be construed
176
- as modifying the License.
177
-
178
- You may add Your own copyright statement to Your modifications and
179
- may provide additional or different license terms and conditions
180
- for use, reproduction, or distribution of Your modifications, or
181
- for any such Derivative Works as a whole, provided Your use,
182
- reproduction, and distribution of the Work otherwise complies with
183
- the conditions stated in this License.
184
-
185
- 5. Submission of Contributions. Unless You explicitly state otherwise,
186
- any Contribution intentionally submitted for inclusion in the Work
187
- by You to the Licensor shall be under the terms and conditions of
188
- this License, without any additional terms or conditions.
189
- Notwithstanding the above, nothing herein shall supersede or modify
190
- the terms of any separate license agreement you may have executed
191
- with Licensor regarding such Contributions.
192
-
193
- 6. Trademarks. This License does not grant permission to use the trade
194
- names, trademarks, service marks, or product names of the Licensor,
195
- except as required for reasonable and customary use in describing the
196
- origin of the Work and reproducing the content of the NOTICE file.
197
-
198
- 7. Disclaimer of Warranty. Unless required by applicable law or
199
- agreed to in writing, Licensor provides the Work (and each
200
- Contributor provides its Contributions) on an "AS IS" BASIS,
201
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
202
- implied, including, without limitation, any warranties or conditions
203
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
204
- PARTICULAR PURPOSE. You are solely responsible for determining the
205
- appropriateness of using or redistributing the Work and assume any
206
- risks associated with Your exercise of permissions under this License.
207
-
208
- 8. Limitation of Liability. In no event and under no legal theory,
209
- whether in tort (including negligence), contract, or otherwise,
210
- unless required by applicable law (such as deliberate and grossly
211
- negligent acts) or agreed to in writing, shall any Contributor be
212
- liable to You for damages, including any direct, indirect, special,
213
- incidental, or consequential damages of any character arising as a
214
- result of this License or out of the use or inability to use the
215
- Work (including but not limited to damages for loss of goodwill,
216
- work stoppage, computer failure or malfunction, or any and all
217
- other commercial damages or losses), even if such Contributor
218
- has been advised of the possibility of such damages.
219
-
220
- 9. Accepting Warranty or Additional Liability. While redistributing
221
- the Work or Derivative Works thereof, You may choose to offer,
222
- and charge a fee for, acceptance of support, warranty, indemnity,
223
- or other liability obligations and/or rights consistent with this
224
- License. However, in accepting such obligations, You may act only
225
- on Your own behalf and on Your sole responsibility, not on behalf
226
- of any other Contributor, and only if You agree to indemnify,
227
- defend, and hold each Contributor harmless for any liability
228
- incurred by, or claims asserted against, such Contributor by reason
229
- of your accepting any such warranty or additional liability.
230
-
231
- END OF TERMS AND CONDITIONS
232
-
233
- APPENDIX: How to apply the Apache License to your work.
234
-
235
- To apply the Apache License to your work, attach the following
236
- boilerplate notice, with the fields enclosed by brackets "[]"
237
- replaced with your own identifying information. (Don't include
238
- the brackets!) The text should be enclosed in the appropriate
239
- comment syntax for the file format. We also recommend that a
240
- file or class name and description of purpose be included on the
241
- same "printed page" as the copyright notice for easier
242
- identification within third-party archives.
243
-
244
- Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
245
-
246
- Licensed under the Apache License, Version 2.0 (the "License");
247
- you may not use this file except in compliance with the License.
248
- You may obtain a copy of the License at
249
-
250
- http://www.apache.org/licenses/LICENSE-2.0
251
-
252
- Unless required by applicable law or agreed to in writing, software
253
- distributed under the License is distributed on an "AS IS" BASIS,
254
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
255
- See the License for the specific language governing permissions and
256
- limitations under the License.
257
-
258
- ------------- LICENSE FOR PanQiWei AutoGPTQ code --------------
259
-
260
- MIT License
261
-
262
- Copyright (c) 2023 潘其威(William)
263
-
264
- Permission is hereby granted, free of charge, to any person obtaining a copy
265
- of this software and associated documentation files (the "Software"), to deal
266
- in the Software without restriction, including without limitation the rights
267
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
268
- copies of the Software, and to permit persons to whom the Software is
269
- furnished to do so, subject to the following conditions:
270
-
271
- The above copyright notice and this permission notice shall be included in all
272
- copies or substantial portions of the Software.
273
-
274
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
275
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
276
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
277
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
278
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
279
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
280
- SOFTWARE.
 
49
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
50
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
51
  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
52
+ SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -6,188 +6,193 @@ tags:
6
  - qwen
7
  pipeline_tag: text-generation
8
  inference: false
9
- license: other
10
- license_name: tongyi-qianwen-license-agreement
11
- license_link: https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
12
  ---
13
 
14
  # Qwen-7B-Chat-Int4
15
 
16
  <p align="center">
17
- <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg" width="400"/>
18
  <p>
19
  <br>
20
 
21
  <p align="center">
22
- 🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a> &nbsp&nbsp | &nbsp&nbsp🖥️ <a href="https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary">Demo</a>
23
- <br>
24
- <a href="https://github.com/QwenLM/Qwen/blob/main/assets/wechat.png">WeChat (微信)</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://dashscope.aliyun.com">API</a>
25
  </p>
26
  <br>
27
 
28
  ## 介绍(Introduction)
29
 
30
- **通义千问-7B(Qwen-7B)**是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。相较于最初开源的Qwen-7B模型,我们现已将预训练模型和Chat模型更新到效果更优的版本。本仓库为Qwen-7B-Chat的Int4量化模型的仓库。
31
-
32
- 如果您想了解更多关于通义千问-7B开源模型的细节,我们建议您参阅[GitHub代码库](https://github.com/QwenLM/Qwen)。
33
 
34
- **Qwen-7B** is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. Now we have updated both our pretrained and chat models for better performances. This repository is the one for the Int4 quantized model of Qwen-7B-Chat.
35
 
36
- For more details about the open-source model of Qwen-7B, please refer to the [GitHub](https://github.com/QwenLM/Qwen) code repository.
37
- <br>
38
 
 
39
 
40
  ## 要求(Requirements)
41
 
42
  * python 3.8及以上版本
43
- * pytorch 2.0及以上版本
44
  * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
45
  * python 3.8 and above
46
  * pytorch 2.0 and above, 2.0 and above are recommended
47
  * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
48
- <br>
49
-
50
 
51
  ## 依赖项(Dependency)
52
 
53
- 运行Qwen-7B-Chat-Int4,请确保满足上述要求,再执行以下pip命令安装依赖库。如安装`auto-gptq`遇到问题,我们建议您到官方[repo](https://github.com/PanQiWei/AutoGPTQ)搜索合适的���编译wheel
54
 
55
- To run Qwen-7B-Chat-Int4, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries. If you meet problems installing `auto-gptq`, we advise you to check out the official [repo](https://github.com/PanQiWei/AutoGPTQ) to find a pre-build wheel.
56
 
57
  ```bash
58
- pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed
59
- pip install auto-gptq optimum
 
 
60
  ```
61
 
62
- 另外,推荐安装`flash-attention`库(**当前已支持flash attention 2**),以实现更高的效率和更低的显存占用。
63
 
64
- In addition, it is recommended to install the `flash-attention` library (**we support flash attention 2 now.**) for higher efficiency and lower memory usage.
65
 
66
  ```bash
67
- git clone https://github.com/Dao-AILab/flash-attention
68
  cd flash-attention && pip install .
69
  # 下方安装可选,安装可能比较缓慢。
 
70
  # pip install csrc/layer_norm
71
  # pip install csrc/rotary
72
  ```
73
 
74
- 如果您有更高推理性能方面的需求,但上述可选加速项`layer_norm`及`rotary`未能安装成功,或是您所使用的GPU不满足`flash-attention`库所要求的NVIDIA Ampere/Ada/Hopper架构,您可以尝试切换至dev_triton分支,使用该分支下基于Triton实现的推理加速方案。该方案适用于更宽范围的GPU产品,在pytorch 2.0及以上版本原生支持,无需额外安装操作。
75
-
76
- If you require higher inference performance yet encounter some problems when installing the optional acceleration features (i.e., `layer_norm` and `rotary`) or if the GPU you are using does not meet the NVIDIA Ampere/Ada/Hopper architecture required by the `flash-attention` library, you may switch to the dev_triton branch and consider trying the inference acceleration solution implemented with Triton in this branch. This solution adapts to a wider range of GPU products and does not require extra package installation with pytorch version 2.0 and above.
77
- <br>
78
-
79
-
80
-
81
  ## 快速使用(Quickstart)
82
 
83
- 下面我们展示了一个使用Qwen-7B-Chat-Int4模型的样例:
 
 
84
 
85
- We show an example of how to use Qwen-7B-Chat-Int4 in the following code:
86
 
87
  ```python
88
- from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
89
 
90
  # Note: The default behavior now has injection attack prevention off.
91
  tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True)
92
 
93
- model = AutoModelForCausalLM.from_pretrained(
94
- "Qwen/Qwen-7B-Chat-Int4",
95
- device_map="auto",
96
- trust_remote_code=True
97
- ).eval()
98
- response, history = model.chat(tokenizer, "你好", history=None)
99
  print(response)
100
  # 你好!很高兴为你提供帮助。
101
  ```
102
 
103
- 关于更多的使用说明,请参考我们的[GitHub repo](https://github.com/QwenLM/Qwen)获取更多信息。
104
 
105
- For more information, please refer to our [GitHub repo](https://github.com/QwenLM/Qwen) for more information.
106
- <br>
107
 
 
108
 
 
109
 
110
- ## 量化 (Quantization)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
  ### 效果评测
113
 
114
- 我们对BF16,Int8和Int4模型在基准评测上做了测试(使用zero-shot设置),发现量化模型效果损失较小,结果如下所示:
115
 
116
- We illustrate the zero-shot performance of both BF16, Int8 and Int4 models on the benchmark, and we find that the quantized model does not suffer from significant performance degradation. Results are shown below:
117
 
118
  | Quantization | MMLU | CEval (val) | GSM8K | Humaneval |
119
  | ------------- | :--------: | :----------: | :----: | :--------: |
120
- | BF16 | 55.8 | 59.7 | 50.3 | 37.2 |
121
- | Int8 | 55.4 | 59.4 | 48.3 | 34.8 |
122
- | Int4 | 55.1 | 59.2 | 49.7 | 29.9 |
123
 
124
- ### 推理速度 (Inference Speed)
125
 
126
- 我们测算了不同精度模型以及不同FlashAttn库版本下模型生成2048和8192个token的平均推理速度。如图所示:
127
 
128
- We measured the average inference speed of generating 2048 and 8192 tokens with different quantization levels and versions of flash-attention, respectively.
129
 
130
- | Quantization | FlashAttn | Speed (2048 tokens) | Speed (8192 tokens) |
131
- | ------------- | :-------: | :------------------:| :------------------:|
132
- | BF16 | v2 | 40.93 | 36.14 |
133
- | Int8 | v2 | 37.47 | 32.54 |
134
- | Int4 | v2 | 50.09 | 38.61 |
135
- | BF16 | v1 | 40.75 | 35.34 |
136
- | Int8 | v1 | 37.51 | 32.39 |
137
- | Int4 | v1 | 45.98 | 36.47 |
138
- | BF16 | Disabled | 37.55 | 33.56 |
139
- | Int8 | Disabled | 37.84 | 32.65 |
140
- | Int4 | Disabled | 48.12 | 36.70 |
141
 
142
- 具体而言,我们记录在长度为1的上下文的条件下生成8192个token的性能。评测运行于单张A100-SXM4-80G GPU,使用PyTorch 2.0.1和CUDA 11.8。推理速度是生成8192个token的速度均值。
143
 
144
- In detail, the setting of profiling is generating 8192 new tokens with 1 context token. The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.8. The inference speed is averaged over the generated 8192 tokens.
 
 
 
145
 
146
- 注意:以上Int4/Int8模型生成速度使用autogptq库���出,当前``AutoModelForCausalLM.from_pretrained``载入的模型生成速度会慢大约20%。我们已经将该问题汇报给HuggingFace团队,若有解决方案将即时更新。
147
 
148
- Note: The generation speed of the Int4/Int8 models mentioned above is provided by the autogptq library. The current speed of the model loaded using "AutoModelForCausalLM.from_pretrained" will be approximately 20% slower. We have reported this issue to the HuggingFace team and will update it promptly if a solution is available.
149
 
150
  ### 显存使用 (GPU Memory Usage)
151
 
152
- 我们还测算了不同模型精度编码2048个token及生成8192个token的峰值显存占用情况。(显存消耗在是否使用FlashAttn的情况下均类似。)结果如下所示:
153
 
154
- We also profile the peak GPU memory usage for encoding 2048 tokens as context (and generating single token) and generating 8192 tokens (with single token as context) under different quantization levels, respectively. The GPU memory usage is similar when using flash-attention or not.)The results are shown below.
155
 
156
  | Quantization Level | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens |
157
  | ------------------ | :---------------------------------: | :-----------------------------------: |
158
- | BF16 | 16.99GB | 22.53GB |
159
- | Int8 | 11.20GB | 16.62GB |
160
- | Int4 | 8.21GB | 13.63GB |
161
 
162
  上述性能测算使用[此脚本](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py)完成。
163
 
164
  The above speed and memory profiling are conducted using [this script](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py).
165
- <br>
166
 
167
  ## Tokenizer
168
 
169
  > 注:作为术语的“tokenization”在中文中尚无共识的概念对应,本文档采用英文表达以利说明。
170
 
171
- 基于tiktoken的分词器有别于其他分词器,比如sentencepiece分词器。尤其在微调阶段,需要特别注意特殊token的使用。关于tokenizer的更多信息,以及微调时涉及的相关使用,请参阅[文档](https://github.com/QwenLM/Qwen/blob/main/tokenization_note_zh.md)。
172
-
173
- Our tokenizer based on tiktoken is different from other tokenizers, e.g., sentencepiece tokenizer. You need to pay attention to special tokens, especially in finetuning. For more detailed information on the tokenizer and related use in fine-tuning, please refer to the [documentation](https://github.com/QwenLM/Qwen/blob/main/tokenization_note.md).
174
- <br>
175
-
176
 
 
177
 
178
  ## 模型细节(Model)
179
 
180
  与Qwen-7B预训练模型相同,Qwen-7B-Chat模型规模基本情况如下所示
181
 
182
- The details of the model architecture of Qwen-7B-Chat are listed as follows:
183
 
184
  | Hyperparameter | Value |
185
- |:----------------|:------:|
186
- | n_layers | 32 |
187
- | n_heads | 32 |
188
- | d_model | 4096 |
189
  | vocab size | 151851 |
190
- | sequence length | 8192 |
191
 
192
  在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
193
  即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
@@ -201,9 +206,6 @@ For position encoding, FFN activation function, and normalization calculation me
201
  For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-7B-Chat uses a vocabulary of over 150K tokens.
202
  It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary.
203
  It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization.
204
- <br>
205
-
206
-
207
 
208
  ## 评测效果(Evaluation)
209
 
@@ -219,24 +221,20 @@ Note: Due to rounding errors caused by hardware and framework, differences in re
219
 
220
  #### C-Eval
221
 
222
- 在[C-Eval](https://arxiv.org/abs/2305.08322)验证集上,我们评价了Qwen-7B-Chat模型的0-shot & 5-shot准确率
223
-
224
- We demonstrate the 0-shot & 5-shot accuracy of Qwen-7B-Chat on C-Eval validation set
225
-
226
- | Model | Avg. Acc. |
227
- |:--------------------------------:|:---------:|
228
- | LLaMA2-7B-Chat | 31.9 |
229
- | LLaMA2-13B-Chat | 36.2 |
230
- | LLaMA2-70B-Chat | 44.3 |
231
- | ChatGLM2-6B-Chat | 52.6 |
232
- | InternLM-7B-Chat | 53.6 |
233
- | Baichuan2-7B-Chat | 55.6 |
234
- | Baichuan2-13B-Chat | 56.7 |
235
- | Qwen-7B-Chat (original) (0-shot) | 54.2 |
236
- | **Qwen-7B-Chat (0-shot)** | 59.7 |
237
- | **Qwen-7B-Chat (5-shot)** | 59.3 |
238
- | **Qwen-14B-Chat (0-shot)** | 69.8 |
239
- | **Qwen-14B-Chat (5-shot)** | **71.7** |
240
 
241
  C-Eval测试集上,Qwen-7B-Chat模型的zero-shot准确率结果如下:
242
 
@@ -248,9 +246,7 @@ The zero-shot accuracy of Qwen-7B-Chat on C-Eval testing set is provided below:
248
  | Chinese-Alpaca-2-7B | 40.3 | - | - | - | - |
249
  | ChatGLM2-6B-Chat | 50.1 | 46.4 | 60.4 | 50.6 | 46.9 |
250
  | Baichuan-13B-Chat | 51.5 | 43.7 | 64.6 | 56.2 | 49.2 |
251
- | Qwen-7B-Chat (original) | 54.6 | 47.8 | 67.6 | 59.3 | 50.6 |
252
- | **Qwen-7B-Chat** | 58.6 | 53.3 | 72.1 | 62.8 | 52.0 |
253
- | **Qwen-14B-Chat** | **69.1** | 65.1 | 80.9 | 71.2 | 63.4 |
254
 
255
  在7B规模模型上,经过人类指令对齐的Qwen-7B-Chat模型,准确率在同类相近规模模型中仍然处于前列。
256
 
@@ -260,25 +256,19 @@ Compared with other pretrained models with comparable model size, the human-alig
260
 
261
  #### MMLU
262
 
263
- [MMLU](https://arxiv.org/abs/2009.03300)评测集上,Qwen-7B-Chat模型的0-shot & 5-shot准确率如下,效果同样在同类对齐模型中同样表现较优。
264
 
265
- The 0-shot & 5-shot accuracy of Qwen-7B-Chat on MMLU is provided below.
266
  The performance of Qwen-7B-Chat still on the top between other human-aligned models with comparable size.
267
 
268
- | Model | Avg. Acc. |
269
- |:--------------------------------:|:---------:|
270
- | ChatGLM2-6B-Chat | 46.0 |
271
- | LLaMA2-7B-Chat | 46.2 |
272
- | InternLM-7B-Chat | 51.1 |
273
- | Baichuan2-7B-Chat | 52.9 |
274
- | LLaMA2-13B-Chat | 54.6 |
275
- | Baichuan2-13B-Chat | 57.3 |
276
- | LLaMA2-70B-Chat | 63.8 |
277
- | Qwen-7B-Chat (original) (0-shot) | 53.9 |
278
- | **Qwen-7B-Chat (0-shot)** | 55.8 |
279
- | **Qwen-7B-Chat (5-shot)** | 57.0 |
280
- | **Qwen-14B-Chat (0-shot)** | 64.6 |
281
- | **Qwen-14B-Chat (5-shot)** | **66.5** |
282
 
283
  ### 代码评测(Coding Evaluation)
284
 
@@ -286,18 +276,13 @@ Qwen-7B-Chat在[HumanEval](https://github.com/openai/human-eval)的zero-shot Pas
286
 
287
  The zero-shot Pass@1 of Qwen-7B-Chat on [HumanEval](https://github.com/openai/human-eval) is demonstrated below
288
 
289
- | Model | Pass@1 |
290
- |:-----------------------:|:--------:|
291
- | ChatGLM2-6B-Chat | 11.0 |
292
- | LLaMA2-7B-Chat | 12.2 |
293
- | InternLM-7B-Chat | 14.6 |
294
- | Baichuan2-7B-Chat | 13.4 |
295
- | LLaMA2-13B-Chat | 18.9 |
296
- | Baichuan2-13B-Chat | 17.7 |
297
- | LLaMA2-70B-Chat | 32.3 |
298
- | Qwen-7B-Chat (original) | 24.4 |
299
- | **Qwen-7B-Chat** | 37.2 |
300
- | **Qwen-14B-Chat** | **43.9** |
301
 
302
  ### 数学评测(Mathematics Evaluation)
303
 
@@ -305,20 +290,15 @@ The zero-shot Pass@1 of Qwen-7B-Chat on [HumanEval](https://github.com/openai/hu
305
 
306
  The accuracy of Qwen-7B-Chat on GSM8K is shown below
307
 
308
- | Model | Acc. |
309
- |:--------------------------------:|:--------:|
310
- | LLaMA2-7B-Chat | 26.3 |
311
- | ChatGLM2-6B-Chat | 28.8 |
312
- | Baichuan2-7B-Chat | 32.8 |
313
- | InternLM-7B-Chat | 33.0 |
314
- | LLaMA2-13B-Chat | 37.1 |
315
- | Baichuan2-13B-Chat | 55.3 |
316
- | LLaMA2-70B-Chat | 59.3 |
317
- | Qwen-7B-Chat (original) (0-shot) | 41.1 |
318
- | **Qwen-7B-Chat (0-shot)** | 50.3 |
319
- | **Qwen-7B-Chat (8-shot)** | 54.1 |
320
- | **Qwen-14B-Chat (0-shot)** | **60.1** |
321
- | **Qwen-14B-Chat (8-shot)** | 59.3 |
322
 
323
  ### 长序列评测(Long-Context Understanding)
324
 
@@ -331,288 +311,66 @@ We introduce NTK-aware interpolation, LogN attention scaling to extend the conte
331
  **(To use these tricks, please set `use_dynamic_ntk` and `use_long_attn` to true in config.json.)**
332
 
333
  | Model | VCSUM (zh) |
334
- |:------------------|:----------:|
335
  | GPT-3.5-Turbo-16k | 16.0 |
336
  | LLama2-7B-Chat | 0.2 |
337
  | InternLM-7B-Chat | 13.0 |
338
  | ChatGLM2-6B-Chat | 16.3 |
339
  | **Qwen-7B-Chat** | **16.6** |
340
 
341
-
342
  ### 工具使用能力的评测(Tool Usage)
343
 
344
  #### ReAct Prompting
345
 
346
  千问支持通过 [ReAct Prompting](https://arxiv.org/abs/2210.03629) 调用插件/工具/API。ReAct 也是 [LangChain](https://python.langchain.com/) 框架采用的主要方式之一。在我们开源的、用于评估工具使用能力的评测基准上,千问的表现如下:
347
 
348
- Qwen-Chat supports calling plugins/tools/APIs through [ReAct Prompting](https://arxiv.org/abs/2210.03629). ReAct is also one of the main approaches used by the [LangChain](https://python.langchain.com/) framework. In our evaluation benchmark for assessing tool usage capabilities, Qwen-Chat's performance is as follows:
349
-
350
- <table>
351
- <tr>
352
- <th colspan="4" align="center">Chinese Tool-Use Benchmark</th>
353
- </tr>
354
- <tr>
355
- <th align="center">Model</th><th align="center">Tool Selection (Acc.↑)</th><th align="center">Tool Input (Rouge-L↑)</th><th align="center">False Positive Error↓</th>
356
- </tr>
357
- <tr>
358
- <td>GPT-4</td><td align="center">95%</td><td align="center">0.90</td><td align="center">15.0%</td>
359
- </tr>
360
- <tr>
361
- <td>GPT-3.5</td><td align="center">85%</td><td align="center">0.88</td><td align="center">75.0%</td>
362
- </tr>
363
- <tr>
364
- <td>Qwen-7B-Chat</td><td align="center">98%</td><td align="center">0.91</td><td align="center">7.3%</td>
365
- </tr>
366
- <tr>
367
- <td>Qwen-14B-Chat</td><td align="center">98%</td><td align="center">0.93</td><td align="center">2.4%</td>
368
- </tr>
369
- </table>
370
 
371
  > 评测基准中出现的插件均没有出现在千问的训练集中。该基准评估了模型在多个候选插件中选择正确插件的准确率、传入插件的参数的合理性、以及假阳率。假阳率(False Positive)定义:在处理不该调用插件的请求时,错误地调用了插件。
372
 
373
- > The plugins that appear in the evaluation set do not appear in the training set of Qwen. This benchmark evaluates the accuracy of the model in selecting the correct plugin from multiple candidate plugins, the rationality of the parameters passed into the plugin, and the false positive rate. False Positive: Incorrectly invoking a plugin when it should not have been called when responding to a query.
374
 
375
- ![](assets/react_showcase_001.png)
376
- ![](assets/react_showcase_002.png)
377
 
378
- #### Code Interpreter
379
-
380
- 为了考察Qwen使用Python Code Interpreter完成数学解题、数据可视化、及文件处理与爬虫等任务的能力,我们专门建设并开源了一个评测这方面能力的[评测基准](https://github.com/QwenLM/Qwen-Agent/tree/main/benchmark)。
381
-
382
- 我们发现Qwen在生成代码的可执行率、结果正确性上均表现较好:
383
-
384
- To assess Qwen's ability to use the Python Code Interpreter for tasks such as mathematical problem solving, data visualization, and other general-purpose tasks such as file handling and web scraping, we have created and open-sourced a benchmark specifically designed for evaluating these capabilities. You can find the benchmark at this [link](https://github.com/QwenLM/Qwen-Agent/tree/main/benchmark).
385
-
386
- We have observed that Qwen performs well in terms of code executability and result accuracy when generating code:
387
-
388
- <table>
389
- <tr>
390
- <th colspan="4" align="center">Executable Rate of Generated Code (%)</th>
391
- </tr>
392
- <tr>
393
- <th align="center">Model</th><th align="center">Math↑</th><th align="center">Visualization↑</th><th align="center">General↑</th>
394
- </tr>
395
- <tr>
396
- <td>GPT-4</td><td align="center">91.9</td><td align="center">85.9</td><td align="center">82.8</td>
397
- </tr>
398
- <tr>
399
- <td>GPT-3.5</td><td align="center">89.2</td><td align="center">65.0</td><td align="center">74.1</td>
400
- </tr>
401
- <tr>
402
- <td>LLaMA2-7B-Chat</td>
403
- <td align="center">41.9</td>
404
- <td align="center">33.1</td>
405
- <td align="center">24.1 </td>
406
- </tr>
407
- <tr>
408
- <td>LLaMA2-13B-Chat</td>
409
- <td align="center">50.0</td>
410
- <td align="center">40.5</td>
411
- <td align="center">48.3 </td>
412
- </tr>
413
- <tr>
414
- <td>CodeLLaMA-7B-Instruct</td>
415
- <td align="center">85.1</td>
416
- <td align="center">54.0</td>
417
- <td align="center">70.7 </td>
418
- </tr>
419
- <tr>
420
- <td>CodeLLaMA-13B-Instruct</td>
421
- <td align="center">93.2</td>
422
- <td align="center">55.8</td>
423
- <td align="center">74.1 </td>
424
- </tr>
425
- <tr>
426
- <td>InternLM-7B-Chat</td>
427
- <td align="center">78.4</td>
428
- <td align="center">44.2</td>
429
- <td align="center">62.1 </td>
430
- </tr>
431
- <tr>
432
- <td>InternLM-20B-Chat</td>
433
- <td align="center">70.3</td>
434
- <td align="center">44.2</td>
435
- <td align="center">65.5 </td>
436
- </tr>
437
- <tr>
438
- <td>Qwen-7B-Chat</td>
439
- <td align="center">82.4</td>
440
- <td align="center">64.4</td>
441
- <td align="center">67.2 </td>
442
- </tr>
443
- <tr>
444
- <td>Qwen-14B-Chat</td>
445
- <td align="center">89.2</td>
446
- <td align="center">84.1</td>
447
- <td align="center">65.5</td>
448
- </tr>
449
- </table>
450
-
451
- <table>
452
- <tr>
453
- <th colspan="4" align="center">Accuracy of Code Execution Results (%)</th>
454
- </tr>
455
- <tr>
456
- <th align="center">Model</th><th align="center">Math↑</th><th align="center">Visualization-Hard↑</th><th align="center">Visualization-Easy↑</th>
457
- </tr>
458
- <tr>
459
- <td>GPT-4</td><td align="center">82.8</td><td align="center">66.7</td><td align="center">60.8</td>
460
- </tr>
461
- <tr>
462
- <td>GPT-3.5</td><td align="center">47.3</td><td align="center">33.3</td><td align="center">55.7</td>
463
- </tr>
464
- <tr>
465
- <td>LLaMA2-7B-Chat</td>
466
- <td align="center">3.9</td>
467
- <td align="center">14.3</td>
468
- <td align="center">39.2 </td>
469
- </tr>
470
- <tr>
471
- <td>LLaMA2-13B-Chat</td>
472
- <td align="center">8.3</td>
473
- <td align="center">8.3</td>
474
- <td align="center">40.5 </td>
475
- </tr>
476
- <tr>
477
- <td>CodeLLaMA-7B-Instruct</td>
478
- <td align="center">14.3</td>
479
- <td align="center">26.2</td>
480
- <td align="center">60.8 </td>
481
- </tr>
482
- <tr>
483
- <td>CodeLLaMA-13B-Instruct</td>
484
- <td align="center">28.2</td>
485
- <td align="center">27.4</td>
486
- <td align="center">62.0 </td>
487
- </tr>
488
- <tr>
489
- <td>InternLM-7B-Chat-v1.1</td>
490
- <td align="center">28.5</td>
491
- <td align="center">4.8</td>
492
- <td align="center">40.5 </td>
493
- </tr>
494
- <tr>
495
- <td>InternLM-20B-Chat</td>
496
- <td align="center">34.6</td>
497
- <td align="center">21.4</td>
498
- <td align="center">45.6 </td>
499
- </tr>
500
- <tr>
501
- <td>Qwen-7B-Chat</td>
502
- <td align="center">41.9</td>
503
- <td align="center">40.5</td>
504
- <td align="center">54.4 </td>
505
- </tr>
506
- <tr>
507
- <td>Qwen-14B-Chat</td>
508
- <td align="center">58.4</td>
509
- <td align="center">53.6</td>
510
- <td align="center">59.5</td>
511
- </tr>
512
- </table>
513
 
514
- <p align="center">
515
- <br>
516
- <img src="assets/code_interpreter_showcase_001.jpg" />
517
- <br>
518
- <p>
519
 
520
  #### Huggingface Agent
521
 
522
  千问还具备作为 [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents) 的能力。它在 Huggingface 提供的run模式评测基准上的表现如下:
523
 
524
- Qwen-Chat also has the capability to be used as a [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents). Its performance on the run-mode benchmark provided by HuggingFace is as follows:
525
-
526
- <table>
527
- <tr>
528
- <th colspan="4" align="center">HuggingFace Agent Benchmark- Run Mode</th>
529
- </tr>
530
- <tr>
531
- <th align="center">Model</th><th align="center">Tool Selection↑</th><th align="center">Tool Used↑</th><th align="center">Code↑</th>
532
- </tr>
533
- <tr>
534
- <td>GPT-4</td><td align="center">100</td><td align="center">100</td><td align="center">97.4</td>
535
- </tr>
536
- <tr>
537
- <td>GPT-3.5</td><td align="center">95.4</td><td align="center">96.3</td><td align="center">87.0</td>
538
- </tr>
539
- <tr>
540
- <td>StarCoder-Base-15B</td><td align="center">86.1</td><td align="center">87.0</td><td align="center">68.9</td>
541
- </tr>
542
- <tr>
543
- <td>StarCoder-15B</td><td align="center">87.0</td><td align="center">88.0</td><td align="center">68.9</td>
544
- </tr>
545
- <tr>
546
- <td>Qwen-7B-Chat</td><td align="center">87.0</td><td align="center">87.0</td><td align="center">71.5</td>
547
- </tr>
548
- <tr>
549
- <td>Qwen-14B-Chat</td><td align="center">93.5</td><td align="center">94.4</td><td align="center">87.0</td>
550
- </tr>
551
- </table>
552
-
553
- <table>
554
- <tr>
555
- <th colspan="4" align="center">HuggingFace Agent Benchmark - Chat Mode</th>
556
- </tr>
557
- <tr>
558
- <th align="center">Model</th><th align="center">Tool Selection↑</th><th align="center">Tool Used↑</th><th align="center">Code↑</th>
559
- </tr>
560
- <tr>
561
- <td>GPT-4</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">98.5</td>
562
- </tr>
563
- <tr>
564
- <td>GPT-3.5</td><td align="center">97.3</td><td align="center">96.8</td><td align="center">89.6</td>
565
- </tr>
566
- <tr>
567
- <td>StarCoder-Base-15B</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">91.1</td>
568
- </tr>
569
- <tr>
570
- <td>StarCoder-15B</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">89.6</td>
571
- </tr>
572
- <tr>
573
- <td>Qwen-7B-Chat</td><td align="center">94.7</td><td align="center">94.7</td><td align="center">85.1</td>
574
- </tr>
575
- <tr>
576
- <td>Qwen-14B-Chat</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">95.5</td>
577
- </tr>
578
- </table>
579
 
580
- <br>
 
 
 
 
 
581
 
582
  ## FAQ
583
 
584
- 如遇到问题,敬请查阅[FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
585
-
586
- If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ.md) and the issues first to search a solution before you launch a new issue.
587
- <br>
588
-
589
- ## 引用 (Citation)
590
 
591
- 如果你觉得我们的工作对你有帮助,欢迎引用!
592
-
593
- If you find our work helpful, feel free to give us a cite.
594
-
595
- ```
596
- @article{qwen,
597
- title={Qwen Technical Report},
598
- author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
599
- journal={arXiv preprint arXiv:2309.16609},
600
- year={2023}
601
- }
602
- ```
603
- <br>
604
 
605
  ## 使用协议(License Agreement)
606
 
607
- 我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)了解具体的开源协议细节。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
608
-
609
- Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) for more details about the license. If you have requirements for commercial use, please fill out the [form](https://dashscope.console.aliyun.com/openModelApply/qianwen) to apply.
610
- <br>
611
 
 
612
 
613
  ## 联系我们(Contact Us)
614
 
615
- 如果你想给我们的研发团队和产品团队留言,欢迎加入我们的微信群、钉钉群以及Discord!同时,也欢迎通过邮件([email protected])联系我们。
616
 
617
- If you are interested to leave a message to either our research team or product team, join our Discord or WeChat groups! Also, feel free to send an email to [email protected].
618
 
 
6
  - qwen
7
  pipeline_tag: text-generation
8
  inference: false
 
 
 
9
  ---
10
 
11
  # Qwen-7B-Chat-Int4
12
 
13
  <p align="center">
14
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo.jpg" width="400"/>
15
  <p>
16
  <br>
17
 
18
  <p align="center">
19
+ Qwen-7B <a href="https://modelscope.cn/models/qwen/Qwen-7B/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-7B">🤗</a>&nbsp Qwen-7B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-7B-Chat">🤗</a>&nbsp | &nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://github.com/QwenLM/Qwen-7B/blob/main/tech_memo.md">Report</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/9bjvspyu">Discord</a>
 
 
20
  </p>
21
  <br>
22
 
23
  ## 介绍(Introduction)
24
 
25
+ **通义千问-7B(Qwen-7B)**是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。本仓库为Qwen-7B-Chat的Int4量化模型的仓库。
 
 
26
 
27
+ 如果您想了解更多关于通义千问-7B开源模型的细节,我们建议您参阅[Github代码库](https://github.com/QwenLM/Qwen-7B)。
28
 
29
+ **Qwen-7B** is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B`is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for the Int4 quantized model of Qwen-7B-Chat.
 
30
 
31
+ For more details about the open-source model of Qwen-7B, please refer to the [Github](https://github.com/QwenLM/Qwen-7B) code repository.
32
 
33
  ## 要求(Requirements)
34
 
35
  * python 3.8及以上版本
36
+ * pytorch 2.0及以上版本,推荐2.0及以上版本
37
  * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
38
  * python 3.8 and above
39
  * pytorch 2.0 and above, 2.0 and above are recommended
40
  * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
 
 
41
 
42
  ## 依赖项(Dependency)
43
 
44
+ 运行Qwen-7B-Chat,请确保满足上述要求,再执行以下pip命令安装依赖库。同时需要通过源代码安装AutoGPTQ。
45
 
46
+ To run Qwen-7B-Chat, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries. Remember to install AutoGPTQ from source.
47
 
48
  ```bash
49
+ pip install -r requirements.txt
50
+
51
+ git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
52
+ pip install .
53
  ```
54
 
55
+ 另外,推荐安装`flash-attention`库,以实现更高的效率和更低的显存占用。
56
 
57
+ In addition, it is recommended to install the `flash-attention` library for higher efficiency and lower memory usage.
58
 
59
  ```bash
60
+ git clone -b v1.0.8 https://github.com/Dao-AILab/flash-attention
61
  cd flash-attention && pip install .
62
  # 下方安装可选,安装可能比较缓慢。
63
+ # Below are optional. Installing them might be slow.
64
  # pip install csrc/layer_norm
65
  # pip install csrc/rotary
66
  ```
67
 
 
 
 
 
 
 
 
68
  ## 快速使用(Quickstart)
69
 
70
+ 下面我们展示了一个使用Qwen-7B-Chat模型,进行多轮对话交互的样例:
71
+
72
+ We show an example of multi-turn interaction with Qwen-7B-Chat in the following code:
73
 
 
74
 
75
  ```python
76
+ from transformers import AutoTokenizer
77
+ from transformers import GenerationConfig
78
+ from auto_gptq import AutoGPTQForCausalLM
79
 
80
  # Note: The default behavior now has injection attack prevention off.
81
  tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True)
82
 
83
+ model = AutoGPTQForCausalLM.from_quantized("Qwen/Qwen-7B-Chat-Int4", device_map="auto", trust_remote_code=True, use_safetensors=True).eval()
84
+
85
+ # Specify hyperparameters for generation
86
+ config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
87
+ response, history = model.chat(tokenizer, "你好", history=None, generation_config=config)
 
88
  print(response)
89
  # 你好!很高兴为你提供帮助。
90
  ```
91
 
92
+ 关于更多的使用说明,请参考我们的[Github repo](https://github.com/QwenLM/Qwen-7B)获取更多信息。
93
 
94
+ For more information, please refer to our [Github repo](https://github.com/QwenLM/Qwen-7B) for more information.
 
95
 
96
+ ## 量化 (Quantization)
97
 
98
+ ### 用法 (Usage)
99
 
100
+ **请注意:我们更新量化方案为基于[AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ)的量化,提供Qwen-7B-Chat的Int4量化模型[点击这里](https://huggingface.co/Qwen/Qwen-7B-Chat-Int4)。相比此前方案,该方案在模型评测效果几乎无损,且存储需求更低,推理速度更优。**
101
+
102
+ **Note: we provide a new solution based on [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), and release an Int4 quantized model for Qwen-7B-Chat [Click here](https://huggingface.co/Qwen/Qwen-7B-Chat-Int4), which achieves nearly lossless model effects but improved performance on both memory costs and inference speed, in comparison with the previous solution.**
103
+
104
+ 以下我们提供示例说明如何使用Int4量化模型。在开始使用前,请先保证满足AutoGPTQ的要求,并使用源代码安装(由于最新支持Qwen的代码未发布到PyPI):
105
+
106
+ Here we demonstrate how to use our provided quantized models for inference. Before you start, make sure you meet the requirements of AutoGPTQ and install it from source (temporarily the codes for Qwen are not yet released in the latest version of PyPI package):
107
+
108
+ ```bash
109
+ git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
110
+ pip install .
111
+ ```
112
+
113
+ 随后便能轻松读取量化模型:
114
+
115
+ Then you can load the quantized model easily as shown below
116
+
117
+ ```
118
+ from auto_gptq import AutoGPTQForCausalLM
119
+ model = AutoGPTQForCausalLM.from_quantized("Qwen/Qwen-7B-Chat-Int4", device_map="auto", trust_remote_code=True, use_safetensors=True).eval()
120
+ ```
121
+
122
+ 推理方法和基础用法类似,但注意需要从外部传入generation config:
123
+
124
+ To run inference, it is similar to the basic usage demonstrated above, but remember to pass in the generation configuration explicitly:
125
+
126
+ ```
127
+ from transformers import GenerationConfig
128
+ config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True)
129
+ response, history = model.chat(tokenizer, "Hi", history=None, generation_config=config)
130
+ ```
131
 
132
  ### 效果评测
133
 
134
+ 我们对BF16和Int4模型在基准评测上做了测试,发现量化模型效果损失较小,结果如下所示:
135
 
136
+ We illustrate the model performance of both BF16 and Int4 models on the benchmark, and we find that the quantized model does not suffer from significant performance degradation. Results are shown below:
137
 
138
  | Quantization | MMLU | CEval (val) | GSM8K | Humaneval |
139
  | ------------- | :--------: | :----------: | :----: | :--------: |
140
+ | BF16 | 53.9 | 54.2 | 41.1 | 24.4 |
141
+ | Int4 | 52.6 | 52.9 | 38.1 | 23.8 |
 
142
 
 
143
 
 
144
 
145
+ ### 推理速度 (Inference Speed)
146
 
147
+ 我们测算了BF16和Int4模型生成20488192个token的平均推理速度。如图所示:
 
 
 
 
 
 
 
 
 
 
148
 
149
+ We measured the average inference speed of generating 2048 and 8192 tokens under BF16 precision and Int4 quantization level, respectively.
150
 
151
+ | Quantization | Speed (2048 tokens) | Speed (8192 tokens) |
152
+ | ------------- | :------------------:| :------------------:|
153
+ | BF16 | 30.53 | 28.51 |
154
+ | Int4 | 45.60 | 33.83 |
155
 
156
+ 具体而言,我们记录在长度为1的上下文的条件下生成8192个token的性能。评测运行于单张A100-SXM4-80G GPU,使用PyTorch 2.0.1和CUDA 11.4。推理速度是生成8192个token的速度均值。
157
 
158
+ In detail, the setting of profiling is generating 8192 new tokens with 1 context token. The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.4. The inference speed is averaged over the generated 8192 tokens.
159
 
160
  ### 显存使用 (GPU Memory Usage)
161
 
162
+ 我们还测算了BF16和Int4模型编码2048个token及生成8192个token的峰值显存占用情况。结果如下所示:
163
 
164
+ We also profile the peak GPU memory usage for encoding 2048 tokens as context (and generating single token) and generating 8192 tokens (with single token as context) under BF16 or Int4 quantization level, respectively. The results are shown below.
165
 
166
  | Quantization Level | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens |
167
  | ------------------ | :---------------------------------: | :-----------------------------------: |
168
+ | BF16 | 18.99GB | 24.40GB |
169
+ | In4 | 10.20GB | 15.61GB |
 
170
 
171
  上述性能测算使用[此脚本](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py)完成。
172
 
173
  The above speed and memory profiling are conducted using [this script](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py).
 
174
 
175
  ## Tokenizer
176
 
177
  > 注:作为术语的“tokenization”在中文中尚无共识的概念对应,本文档采用英文表达以利说明。
178
 
179
+ 基于tiktoken的分词器有别于其他分词器,比如sentencepiece分词器。尤其在微调阶段,需要特别注意特殊token的使用。关于tokenizer的更多信息,以及微调时涉及的相关使用,请参阅[文档](https://github.com/QwenLM/Qwen-7B/blob/main/tokenization_note_zh.md)。
 
 
 
 
180
 
181
+ Our tokenizer based on tiktoken is different from other tokenizers, e.g., sentencepiece tokenizer. You need to pay attention to special tokens, especially in finetuning. For more detailed information on the tokenizer and related use in fine-tuning, please refer to the [documentation](https://github.com/QwenLM/Qwen-7B/blob/main/tokenization_note.md).
182
 
183
  ## 模型细节(Model)
184
 
185
  与Qwen-7B预训练模型相同,Qwen-7B-Chat模型规模基本情况如下所示
186
 
187
+ The details of the model architecture of Qwen-7B-Chat are listed as follows
188
 
189
  | Hyperparameter | Value |
190
+ | :------------- | :----: |
191
+ | n_layers | 32 |
192
+ | n_heads | 32 |
193
+ | d_model | 4096 |
194
  | vocab size | 151851 |
195
+ | sequence length | 2048 |
196
 
197
  在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
198
  即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
 
206
  For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-7B-Chat uses a vocabulary of over 150K tokens.
207
  It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary.
208
  It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization.
 
 
 
209
 
210
  ## 评测效果(Evaluation)
211
 
 
221
 
222
  #### C-Eval
223
 
224
+ 在[C-Eval](https://arxiv.org/abs/2305.08322)验证集上,我们评价了Qwen-7B-Chat模型的zero-shot准确率
225
+
226
+ We demonstrate the zero-shot accuracy of Qwen-7B-Chat on C-Eval validation set
227
+
228
+ | Model | Avg. Acc. |
229
+ | :---------------------- | :-------: |
230
+ | LLaMA2-7B-Chat | 31.9 |
231
+ | LLaMA2-13B-Chat | 40.6 |
232
+ | Chinese-Alpaca-2-7B | 41.3 |
233
+ | Chinese-Alpaca-Plus-13B | 43.3 |
234
+ | Baichuan-13B-Chat | 50.4 |
235
+ | ChatGLM2-6B-Chat | 50.7 |
236
+ | InternLM-7B-Chat | 53.2 |
237
+ | **Qwen-7B-Chat** | **54.2** |
 
 
 
 
238
 
239
  C-Eval测试集上,Qwen-7B-Chat模型的zero-shot准确率结果如下:
240
 
 
246
  | Chinese-Alpaca-2-7B | 40.3 | - | - | - | - |
247
  | ChatGLM2-6B-Chat | 50.1 | 46.4 | 60.4 | 50.6 | 46.9 |
248
  | Baichuan-13B-Chat | 51.5 | 43.7 | 64.6 | 56.2 | 49.2 |
249
+ | **Qwen-7B-Chat** | **54.6** | 47.8 | 67.6 | 59.3 | 50.6 |
 
 
250
 
251
  在7B规模模型上,经过人类指令对齐的Qwen-7B-Chat模型,准确率在同类相近规模模型中仍然处于前列。
252
 
 
256
 
257
  #### MMLU
258
 
259
+ [MMLU](https://arxiv.org/abs/2009.03300)评测集上,Qwen-7B-Chat模型的zero-shot准确率如下,效果同样在同类对齐模型中同样表现较优。
260
 
261
+ The zero-shot accuracy of Qwen-7B-Chat on MMLU is provided below.
262
  The performance of Qwen-7B-Chat still on the top between other human-aligned models with comparable size.
263
 
264
+ | Model | Avg. Acc. |
265
+ | :---------------- | :-------: |
266
+ | ChatGLM2-6B-Chat | 45.5 |
267
+ | LLaMA2-7B-Chat | 47.0 |
268
+ | InternLM-7B-Chat | 50.8 |
269
+ | Baichuan-13B-Chat | 52.1 |
270
+ | ChatGLM2-12B-Chat | 52.1 |
271
+ | **Qwen-7B-Chat** | **53.9** |
 
 
 
 
 
 
272
 
273
  ### 代码评测(Coding Evaluation)
274
 
 
276
 
277
  The zero-shot Pass@1 of Qwen-7B-Chat on [HumanEval](https://github.com/openai/human-eval) is demonstrated below
278
 
279
+ | Model | Pass@1 |
280
+ | :---------------- | :------: |
281
+ | LLaMA2-7B-Chat | 12.2 |
282
+ | InternLM-7B-Chat | 14.0 |
283
+ | Baichuan-13B-Chat | 16.5 |
284
+ | LLaMA2-13B-Chat | 18.9 |
285
+ | **Qwen-7B-Chat** | **24.4** |
 
 
 
 
 
286
 
287
  ### 数学评测(Mathematics Evaluation)
288
 
 
290
 
291
  The accuracy of Qwen-7B-Chat on GSM8K is shown below
292
 
293
+ | Model | Zero-shot Acc. | 4-shot Acc. |
294
+ | :---------------- | :------------: | :--------: |
295
+ | ChatGLM2-6B-Chat | - | 28.0 |
296
+ | LLaMA2-7B-Chat | 20.4 | 28.2 |
297
+ | LLaMA2-13B-Chat | 29.4 | 36.7 |
298
+ | InternLM-7B-Chat | 32.6 | 34.5 |
299
+ | Baichuan-13B-Chat | - | 36.3 |
300
+ | ChatGLM2-12B-Chat | - | 38.1 |
301
+ | **Qwen-7B-Chat** | **41.1** | **43.5** |
 
 
 
 
 
302
 
303
  ### 长序列评测(Long-Context Understanding)
304
 
 
311
  **(To use these tricks, please set `use_dynamic_ntk` and `use_long_attn` to true in config.json.)**
312
 
313
  | Model | VCSUM (zh) |
314
+ | :---------------- | :--------: |
315
  | GPT-3.5-Turbo-16k | 16.0 |
316
  | LLama2-7B-Chat | 0.2 |
317
  | InternLM-7B-Chat | 13.0 |
318
  | ChatGLM2-6B-Chat | 16.3 |
319
  | **Qwen-7B-Chat** | **16.6** |
320
 
 
321
  ### 工具使用能力的评测(Tool Usage)
322
 
323
  #### ReAct Prompting
324
 
325
  千问支持通过 [ReAct Prompting](https://arxiv.org/abs/2210.03629) 调用插件/工具/API。ReAct 也是 [LangChain](https://python.langchain.com/) 框架采用的主要方式之一。在我们开源的、用于评估工具使用能力的评测基准上,千问的表现如下:
326
 
327
+ Qwen-7B-Chat supports calling plugins/tools/APIs through [ReAct Prompting](https://arxiv.org/abs/2210.03629). ReAct is also one of the main approaches used by the [LangChain](https://python.langchain.com/) framework. In our evaluation benchmark for assessing tool usage capabilities, Qwen-7B-Chat's performance is as follows:
328
+
329
+ | Model | Tool Selection (Acc.↑) | Tool Input (Rouge-L↑) | False Positive Error”↓ |
330
+ | :--------------- | :---------------------: | :--------------------: | :--------------------: |
331
+ | GPT-4 | 95% | **0.90** | 15% |
332
+ | GPT-3.5 | 85% | 0.88 | 75% |
333
+ | **Qwen-7B-Chat** | **99%** | 0.89 | **9.7%** |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
 
335
  > 评测基准中出现的插件均没有出现在千问的训练集中。该基准评估了模型在多个候选插件中选择正确插件的准确率、传入插件的参数的合理性、以及假阳率。假阳率(False Positive)定义:在处理不该调用插件的请求时,错误地调用了插件。
336
 
337
+ > The plugins that appear in the evaluation set do not appear in the training set of Qwen-7B-Chat. This benchmark evaluates the accuracy of the model in selecting the correct plugin from multiple candidate plugins, the rationality of the parameters passed into the plugin, and the false positive rate. False Positive: Incorrectly invoking a plugin when it should not have been called when responding to a query.
338
 
339
+ 关于 ReAct Prompting 的 prompt 怎么写、怎么使用,请参考 [ReAct 样例说明](examples/react_prompt.md)。使用工具能使模型更好地完成任务。基于千问的工具使用能力,我们能实现下图所展示的效果:
 
340
 
341
+ For how to write and use prompts for ReAct Prompting, please refer to [the ReAct examples](examples/react_prompt.md). The use of tools can enable the model to better perform tasks, as shown in the following figures:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
 
343
+ ![](assets/react_showcase_001.png)
344
+ ![](assets/react_showcase_002.png)
 
 
 
345
 
346
  #### Huggingface Agent
347
 
348
  千问还具备作为 [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents) 的能力。它在 Huggingface 提供的run模式评测基准上的表现如下:
349
 
350
+ Qwen-7B-Chat also has the capability to be used as a [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents). Its performance on the run-mode benchmark provided by HuggingFace is as follows:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351
 
352
+ | Model | Tool Selection↑ | Tool Used↑ | Code↑ |
353
+ | :-------------- | :-------------: | :---------: | :-------: |
354
+ | GPT-4 | **100** | **100** | **97.41** |
355
+ | GPT-3.5 | 95.37 | 96.30 | 87.04 |
356
+ | StarCoder-15.5B | 87.04 | 87.96 | 68.89 |
357
+ | **Qwen-7B** | 90.74 | 92.59 | 74.07 |
358
 
359
  ## FAQ
360
 
361
+ 如遇到问题,敬请查阅[FAQ](https://github.com/QwenLM/Qwen-7B/blob/main/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
 
 
 
 
 
362
 
363
+ If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-7B/blob/main/FAQ.md) and the issues first to search a solution before you launch a new issue.
 
 
 
 
 
 
 
 
 
 
 
 
364
 
365
  ## 使用协议(License Agreement)
366
 
367
+ 我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen-7B/blob/main/LICENSE)了解具体的开源协议细节。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
 
 
 
368
 
369
+ Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen-7B/blob/main/LICENSE) for more details about the license. If you have requirements for commercial use, please fill out the [form](https://dashscope.console.aliyun.com/openModelApply/qianwen) to apply.
370
 
371
  ## 联系我们(Contact Us)
372
 
373
+ 如果你想给我们的研发团队和产品团队留言,请通过邮件([email protected])联系我们。
374
 
375
+ If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
376
 
assets/cli_demo.gif CHANGED

Git LFS Details

  • SHA256: 2502b56784d9e2ba70094c040f80b3571d4969a24d27b126ce22ed489b3e31f1
  • Pointer size: 132 Bytes
  • Size of remote file: 1.98 MB
assets/code_interpreter_showcase_001.jpg DELETED
Binary file (138 kB)
 
model-00001-of-00003.safetensors → assets/hfagent_chat_1.png RENAMED
File without changes
model-00002-of-00003.safetensors → assets/hfagent_chat_2.png RENAMED
File without changes
model-00003-of-00003.safetensors → assets/hfagent_run.png RENAMED
File without changes
assets/logo.jpg CHANGED
assets/openai_api.gif ADDED

Git LFS Details

  • SHA256: b457ed0497eba0dff8e2a11093662a548df73c09b506f590a94cab9535a6b83b
  • Pointer size: 132 Bytes
  • Size of remote file: 1.2 MB
assets/performance.png ADDED

Git LFS Details

  • SHA256: 75125384be63801d16effcd36b65f5377c2c2e072e619aa0441ed1fa3051536d
  • Pointer size: 131 Bytes
  • Size of remote file: 118 kB
assets/qwen_tokenizer.png ADDED

Git LFS Details

  • SHA256: 7df459f84e9b78d2053ad3facee25f03b3b31b3f26dd50a057da24b5f793dce0
  • Pointer size: 130 Bytes
  • Size of remote file: 28.7 kB
assets/react_showcase_001.png CHANGED

Git LFS Details

  • SHA256: eb57215c42302e0ad947212041338be5c1e776e949f61b2f3a08bef50ea99982
  • Pointer size: 131 Bytes
  • Size of remote file: 309 kB
assets/react_showcase_002.png CHANGED

Git LFS Details

  • SHA256: 8254205c9b18d994577fb5c2bc6cebebfda54507c499a57ea72a4affe75b05f9
  • Pointer size: 131 Bytes
  • Size of remote file: 630 kB
assets/react_tutorial_001.png ADDED

Git LFS Details

  • SHA256: dcadd2eb3913539f4540e21ebe6555afd8153ec6703dc868a2a7b6a4532d21e7
  • Pointer size: 131 Bytes
  • Size of remote file: 385 kB
assets/react_tutorial_002.png ADDED

Git LFS Details

  • SHA256: aff43d152a5dddf3afcc2dd9db21c6c167633f67b945c0c10a1cc0fc924898c0
  • Pointer size: 131 Bytes
  • Size of remote file: 455 kB
assets/tokenizer.pdf ADDED
Binary file (24.7 kB). View file
 
assets/tokenizer.png ADDED

Git LFS Details

  • SHA256: 91fa17ef2b8eaa1bbc391b4f975cc40ba5c83e472679089c393c9b282222b9b6
  • Pointer size: 131 Bytes
  • Size of remote file: 142 kB
assets/wanx_colorful_black.png ADDED

Git LFS Details

  • SHA256: 650a5431b1a3b4411fc4c2fd44dea3066a4ec67b03b684721086265698d738c4
  • Pointer size: 132 Bytes
  • Size of remote file: 1.33 MB
assets/web_demo.gif ADDED

Git LFS Details

  • SHA256: 4a721165a571d1b8a22861d0c489f5b6ce5bb1df44470fff957bc8704e2bf996
  • Pointer size: 133 Bytes
  • Size of remote file: 18.8 MB
assets/wechat.png DELETED
Binary file (68.4 kB)
 
cache_autogptq_cuda_256.cpp DELETED
@@ -1,198 +0,0 @@
1
- #include <torch/all.h>
2
- #include <torch/python.h>
3
- #include <c10/cuda/CUDAGuard.h>
4
-
5
- // adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_256.cpp
6
- void vecquant8matmul_cuda(
7
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
8
- torch::Tensor scales, torch::Tensor zeros,
9
- torch::Tensor g_idx
10
- );
11
-
12
- void vecquant8matmul(
13
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
14
- torch::Tensor scales, torch::Tensor zeros,
15
- torch::Tensor g_idx
16
- ) {
17
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
18
- vecquant8matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
19
- }
20
-
21
- void vecquant8matmul_batched_cuda(
22
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
23
- torch::Tensor scales, torch::Tensor zeros
24
- );
25
-
26
- void vecquant8matmul_batched(
27
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
28
- torch::Tensor scales, torch::Tensor zeros
29
- ) {
30
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
31
- vecquant8matmul_batched_cuda(vec, mat, mul, scales, zeros);
32
- }
33
-
34
- void vecquant8matmul_batched_column_compression_cuda(
35
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
36
- torch::Tensor scales, torch::Tensor zeros
37
- );
38
-
39
- void vecquant8matmul_batched_column_compression(
40
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
41
- torch::Tensor scales, torch::Tensor zeros
42
- ) {
43
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
44
- vecquant8matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
45
- }
46
-
47
- void vecquant4matmul_batched_cuda(
48
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
49
- torch::Tensor scales, torch::Tensor zeros
50
- );
51
-
52
- void vecquant4matmul_batched(
53
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
54
- torch::Tensor scales, torch::Tensor zeros
55
- ) {
56
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
57
- vecquant4matmul_batched_cuda(vec, mat, mul, scales, zeros);
58
- }
59
-
60
- void vecquant4matmul_batched_column_compression_cuda(
61
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
62
- torch::Tensor scales, torch::Tensor zeros
63
- );
64
-
65
- void vecquant4matmul_batched_column_compression(
66
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
67
- torch::Tensor scales, torch::Tensor zeros
68
- ) {
69
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
70
- vecquant4matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
71
- }
72
-
73
- void vecquant8matmul_batched_old_cuda(
74
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
75
- torch::Tensor scales, torch::Tensor zeros
76
- );
77
-
78
- void vecquant8matmul_batched_old(
79
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
80
- torch::Tensor scales, torch::Tensor zeros
81
- ) {
82
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
83
- vecquant8matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
84
- }
85
-
86
-
87
- void vecquant4matmul_batched_old_cuda(
88
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
89
- torch::Tensor scales, torch::Tensor zeros
90
- );
91
-
92
- void vecquant4matmul_batched_old(
93
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
94
- torch::Tensor scales, torch::Tensor zeros
95
- ) {
96
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
97
- vecquant4matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
98
- }
99
-
100
- void vecquant8matmul_batched_column_compression_old_cuda(
101
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
102
- torch::Tensor scales, torch::Tensor zeros
103
- );
104
-
105
- void vecquant8matmul_batched_column_compression_old(
106
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
107
- torch::Tensor scales, torch::Tensor zeros
108
- ) {
109
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
110
- vecquant8matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
111
- }
112
-
113
- void vecquant4matmul_batched_column_compression_old_cuda(
114
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
115
- torch::Tensor scales, torch::Tensor zeros
116
- );
117
-
118
- void vecquant4matmul_batched_column_compression_old(
119
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
120
- torch::Tensor scales, torch::Tensor zeros
121
- ) {
122
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
123
- vecquant4matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
124
- }
125
-
126
-
127
-
128
- void vecquant8matmul_batched_faster_cuda(
129
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
130
- torch::Tensor scales, torch::Tensor zeros
131
- );
132
-
133
- void vecquant8matmul_batched_faster(
134
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
135
- torch::Tensor scales, torch::Tensor zeros
136
- ) {
137
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
138
- vecquant8matmul_batched_faster_cuda(vec, mat, mul, scales, zeros);
139
- }
140
-
141
-
142
- void vecquant8matmul_batched_faster_old_cuda(
143
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
144
- torch::Tensor scales, torch::Tensor zeros
145
- );
146
-
147
- void vecquant8matmul_batched_faster_old(
148
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
149
- torch::Tensor scales, torch::Tensor zeros
150
- ) {
151
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
152
- vecquant8matmul_batched_faster_old_cuda(vec, mat, mul, scales, zeros);
153
- }
154
-
155
- void vecquant8matmul_batched_column_compression_faster_cuda(
156
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
157
- torch::Tensor scales, torch::Tensor zeros
158
- );
159
-
160
- void vecquant8matmul_batched_column_compression_faster(
161
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
162
- torch::Tensor scales, torch::Tensor zeros
163
- ) {
164
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
165
- vecquant8matmul_batched_column_compression_faster_cuda(vec, mat, mul, scales, zeros);
166
- }
167
-
168
-
169
- void vecquant8matmul_batched_column_compression_faster_old_cuda(
170
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
171
- torch::Tensor scales, torch::Tensor zeros
172
- );
173
-
174
- void vecquant8matmul_batched_column_compression_faster_old(
175
- torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
176
- torch::Tensor scales, torch::Tensor zeros
177
- ) {
178
- const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
179
- vecquant8matmul_batched_column_compression_faster_old_cuda(vec, mat, mul, scales, zeros);
180
- }
181
-
182
-
183
-
184
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
185
- m.def("vecquant8matmul", &vecquant8matmul, "Vector 8-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
186
- m.def("vecquant8matmul_batched", &vecquant8matmul_batched, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
187
- m.def("vecquant8matmul_batched_old", &vecquant8matmul_batched_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
188
- m.def("vecquant8matmul_batched_faster", &vecquant8matmul_batched_faster, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
189
- m.def("vecquant8matmul_batched_faster_old", &vecquant8matmul_batched_faster_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
190
- m.def("vecquant4matmul_batched_old", &vecquant4matmul_batched_old, "Vector 4-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
191
- m.def("vecquant8matmul_batched_column_compression", &vecquant8matmul_batched_column_compression, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
192
- m.def("vecquant8matmul_batched_column_compression_old", &vecquant8matmul_batched_column_compression_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
193
- m.def("vecquant8matmul_batched_column_compression_faster", &vecquant8matmul_batched_column_compression_faster, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
194
- m.def("vecquant8matmul_batched_column_compression_faster_old", &vecquant8matmul_batched_column_compression_faster_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
195
- m.def("vecquant4matmul_batched_column_compression_old", &vecquant4matmul_batched_column_compression_old, "Vector old 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
196
- m.def("vecquant4matmul_batched", &vecquant4matmul_batched, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
197
- m.def("vecquant4matmul_batched_column_compression", &vecquant4matmul_batched_column_compression, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
198
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cache_autogptq_cuda_kernel_256.cu DELETED
@@ -1,1708 +0,0 @@
1
- #define _CRT_SECURE_NO_WARNINGS
2
- #include <torch/all.h>
3
- #include <torch/python.h>
4
- #include <cuda.h>
5
- #include <cuda_runtime.h>
6
- #include <cuda_fp16.h>
7
- #include <stdint.h>
8
-
9
- #if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700) || defined(USE_ROCM)
10
- // adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_kernel_256.cu
11
- __device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
12
- unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2));
13
- unsigned int old = *address_as_ui;
14
- unsigned int assumed;
15
-
16
- do {
17
- assumed = old;
18
- unsigned short hsum = reinterpret_cast<size_t>(address) & 2 ? (old >> 16) : (old & 0xffff);
19
- hsum += val;
20
- old = reinterpret_cast<size_t>(address) & 2
21
- ? (old & 0xffff) | (hsum << 16)
22
- : (old & 0xffff0000) | hsum;
23
- old = atomicCAS(address_as_ui, assumed, old);
24
-
25
- // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
26
- } while (assumed != old);
27
- }
28
- __device__ __forceinline__ void atomicAdd(__half* address, c10::Half val) {
29
- unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
30
- unsigned int old = *address_as_ui;
31
- unsigned int assumed;
32
-
33
- do {
34
- assumed = old;
35
- __half_raw hsum;
36
- hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
37
- half tmpres = __hadd(hsum, val);
38
- hsum = __half_raw(tmpres);
39
- old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
40
- old = atomicCAS(address_as_ui, assumed, old);
41
- } while (assumed != old);
42
- }
43
- #endif
44
-
45
- template <typename scalar_t>
46
- __global__ void VecQuant8MatMulKernel(
47
- const scalar_t* __restrict__ vec,
48
- const int* __restrict__ mat,
49
- scalar_t* __restrict__ mul,
50
- const scalar_t* __restrict__ scales,
51
- const int* __restrict__ zeros,
52
- const int* __restrict__ g_idx,
53
- int batch,
54
- int vec_height,
55
- int height,
56
- int width,
57
- int zero_width
58
- );
59
-
60
- template <typename scalar_t>
61
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel(
62
- const scalar_t* __restrict__ vec,
63
- const int* __restrict__ mat,
64
- scalar_t* __restrict__ mul,
65
- const scalar_t* __restrict__ scales,
66
- const int* __restrict__ zeros,
67
- int batch,
68
- int heads,
69
- int vec_row,
70
- int height,
71
- int width
72
- );
73
-
74
- template <typename scalar_t>
75
- __global__ void VecQuant4BatchMatMulColumnCompressionKernel(
76
- const scalar_t* __restrict__ vec,
77
- const int* __restrict__ mat,
78
- scalar_t* __restrict__ mul,
79
- const scalar_t* __restrict__ scales,
80
- const int* __restrict__ zeros,
81
- int batch,
82
- int heads,
83
- int vec_row,
84
- int height,
85
- int width
86
- );
87
-
88
- template <typename scalar_t>
89
- __global__ void VecQuant8BatchMatMulKernel(
90
- const scalar_t* __restrict__ vec,
91
- const int* __restrict__ mat,
92
- scalar_t* __restrict__ mul,
93
- const scalar_t* __restrict__ scales,
94
- const int* __restrict__ zeros,
95
- int batch,
96
- int heads,
97
- int vec_row,
98
- int vec_height,
99
- int height,
100
- int width,
101
- int zero_width
102
- );
103
-
104
- template <typename scalar_t>
105
- __global__ void VecQuant4BatchMatMulKernel(
106
- const scalar_t* __restrict__ vec,
107
- const int* __restrict__ mat,
108
- scalar_t* __restrict__ mul,
109
- const scalar_t* __restrict__ scales,
110
- const int* __restrict__ zeros,
111
- int batch,
112
- int heads,
113
- int vec_row,
114
- int vec_height,
115
- int height,
116
- int width,
117
- int zero_width
118
- );
119
-
120
-
121
-
122
- template <typename scalar_t>
123
- __global__ void VecQuant8BatchMatMulKernel_old(
124
- const scalar_t* __restrict__ vec,
125
- const uint8_t* __restrict__ mat,
126
- scalar_t* __restrict__ mul,
127
- const scalar_t* __restrict__ scales,
128
- const scalar_t* __restrict__ zeros,
129
- int batch,
130
- int heads,
131
- int vec_row,
132
- int vec_height,
133
- int height,
134
- int width,
135
- int zero_width
136
- );
137
-
138
- __global__ void VecQuant8BatchMatMulKernel_faster(
139
- const half* __restrict__ vec,
140
- const uint8_t* __restrict__ mat,
141
- half* __restrict__ mul,
142
- const half* __restrict__ scales,
143
- const half* __restrict__ zeros,
144
- int batch,
145
- int heads,
146
- int vec_row,
147
- int vec_height,
148
- int height,
149
- int width,
150
- int zero_width
151
- );
152
-
153
-
154
-
155
- __global__ void VecQuant8BatchMatMulKernel_faster_old(
156
- const half* __restrict__ vec,
157
- const uint8_t* __restrict__ mat,
158
- half* __restrict__ mul,
159
- const half* __restrict__ scales,
160
- const half* __restrict__ zeros,
161
- int batch,
162
- int heads,
163
- int vec_row,
164
- int vec_height,
165
- int height,
166
- int width
167
- );
168
-
169
-
170
- template <typename scalar_t>
171
- __global__ void VecQuant4BatchMatMulKernel_old(
172
- const scalar_t* __restrict__ vec,
173
- const uint8_t* __restrict__ mat,
174
- scalar_t* __restrict__ mul,
175
- const scalar_t* __restrict__ scales,
176
- const scalar_t* __restrict__ zeros,
177
- int batch,
178
- int heads,
179
- int vec_row,
180
- int vec_height,
181
- int height,
182
- int width,
183
- int zero_width
184
- );
185
-
186
-
187
- template <typename scalar_t>
188
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
189
- const scalar_t* __restrict__ vec,
190
- const uint8_t* __restrict__ mat,
191
- scalar_t* __restrict__ mul,
192
- const scalar_t* __restrict__ scales,
193
- const scalar_t* __restrict__ zeros,
194
- int batch,
195
- int heads,
196
- int vec_row,
197
- int height,
198
- int width
199
- );
200
-
201
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
202
- const half* __restrict__ vec,
203
- const uint8_t* __restrict__ mat,
204
- half* __restrict__ mul,
205
- const half* __restrict__ scales,
206
- const half* __restrict__ zeros,
207
- int batch,
208
- int heads,
209
- int vec_row,
210
- int height,
211
- int width
212
- );
213
-
214
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
215
- const half* __restrict__ vec,
216
- const uint8_t* __restrict__ mat,
217
- half* __restrict__ mul,
218
- const half* __restrict__ scales,
219
- const half* __restrict__ zeros,
220
- int batch,
221
- int heads,
222
- int vec_row,
223
- int height,
224
- int width
225
- );
226
-
227
-
228
- template <typename scalar_t>
229
- __global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
230
- const scalar_t* __restrict__ vec,
231
- const uint8_t* __restrict__ mat,
232
- scalar_t* __restrict__ mul,
233
- const scalar_t* __restrict__ scales,
234
- const scalar_t* __restrict__ zeros,
235
- int batch,
236
- int heads,
237
- int vec_row,
238
- int height,
239
- int width
240
- );
241
-
242
-
243
- __global__ void VecQuant8BatchMatMulKernel_faster(
244
- const half* __restrict__ vec,
245
- const uint8_t* __restrict__ mat,
246
- half* __restrict__ mul,
247
- const half* __restrict__ scales,
248
- const half* __restrict__ zeros,
249
- int batch,
250
- int heads,
251
- int vec_row,
252
- int vec_height,
253
- int height,
254
- int width
255
- );
256
-
257
-
258
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
259
- const half* __restrict__ vec,
260
- const uint8_t* __restrict__ mat,
261
- half* __restrict__ mul,
262
- const half* __restrict__ scales,
263
- const half* __restrict__ zeros,
264
- int batch,
265
- int heads,
266
- int vec_row,
267
- int height,
268
- int width
269
- );
270
-
271
- const int BLOCKWIDTH = 128;
272
- const int BLOCKHEIGHT8 = 32;
273
- const int BLOCKHEIGHT4 = 16;
274
- const int BLOCKHEIGHT_OLD4 = 128;
275
- //const int BLOCKHEIGHT_OLD8 = 128;
276
-
277
- __device__ inline unsigned int as_unsigned(int i) {
278
- return *reinterpret_cast<unsigned int*>(&i);
279
- }
280
-
281
- __device__ inline int as_int(int i) {
282
- return *reinterpret_cast<int*>(&i);
283
- }
284
-
285
- void vecquant8matmul_batched_column_compression_cuda(
286
- torch::Tensor vec,
287
- torch::Tensor mat,
288
- torch::Tensor mul,
289
- torch::Tensor scales,
290
- torch::Tensor zeros
291
- ) {
292
- int batch = vec.size(0);
293
- int heads = vec.size(1);
294
- int vec_row = vec.size(2);
295
- int height = vec.size(3);
296
- int width = mat.size(3) * 4;
297
-
298
- dim3 blocks(
299
- (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
300
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
301
- );
302
- dim3 threads(BLOCKWIDTH);
303
-
304
- AT_DISPATCH_FLOATING_TYPES(
305
- vec.type(), "vecquant8matmul_batched_cuda", ([&] {
306
- VecQuant8BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
307
- vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
308
- scales.data<scalar_t>(), zeros.data<int>(),
309
- batch, heads, vec_row, height, width
310
- );
311
- })
312
- );
313
-
314
- }
315
-
316
- template <typename scalar_t>
317
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel(
318
- const scalar_t* __restrict__ vec,
319
- const int* __restrict__ mat,
320
- scalar_t* __restrict__ mul,
321
- const scalar_t* __restrict__ scales,
322
- const int* __restrict__ zeros,
323
- int batch,
324
- int heads,
325
- int vec_row,
326
- int height,
327
- int width
328
- ) {
329
- int weight_total = batch * heads * height * width / 4;
330
- int input_total = batch * heads * vec_row * height;
331
- int out_total = batch * heads * vec_row * width;
332
- int tid = threadIdx.x;
333
- // h is index of height with step being BLOCKWIDTH
334
- int h = BLOCKWIDTH * blockIdx.x;
335
- // w is index of width with step being 1
336
- int w = BLOCKWIDTH * blockIdx.y + tid;
337
- if (w >= width && tid >= height) {
338
- return;
339
- }
340
-
341
- __shared__ scalar_t blockvec[BLOCKWIDTH];
342
- int k;
343
- scalar_t w_tmp;
344
-
345
- float weight[BLOCKWIDTH];
346
-
347
- for (int b = 0; b < batch; ++b){
348
- for (int head = 0; head < heads; ++head){
349
- int batch_shift = b * heads + head;
350
- for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
351
- int i_w = (w / 4);
352
- int w_bit = (w % 4) * 8;
353
-
354
- int w_index = (batch_shift * height + h + k) * width / 4 + i_w;
355
- if (w_index >= weight_total || w >= width) {
356
- weight[k] = 0;
357
- } else {
358
- scalar_t scale = scales[batch_shift * height + h + k];
359
- scalar_t zero = zeros[batch_shift * height + h + k];
360
- w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xFF);
361
- weight[k] = scale * (w_tmp - zero);
362
- }
363
- }
364
-
365
- scalar_t res;
366
- for (int vr = 0; vr < vec_row; ++vr){
367
- res = 0;
368
- int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
369
- if (vec_index < input_total) {
370
- blockvec[tid] = vec[vec_index];
371
- } else {
372
- blockvec[tid] = 0;
373
- }
374
-
375
- __syncthreads();
376
- for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
377
- // res is the dot product of BLOCKWIDTH elements (part of width)
378
- res += weight[k] * blockvec[k];
379
- }
380
- // add res to the final result, final matrix shape: (batch, vec_row, width)
381
- int out_index = (batch_shift * vec_row + vr) * width + w;
382
- if (out_index < out_total) {
383
- atomicAdd(&mul[out_index], res);
384
- }
385
- __syncthreads();
386
- }
387
- }
388
- }
389
- }
390
-
391
- void vecquant8matmul_batched_cuda(
392
- torch::Tensor vec,
393
- torch::Tensor mat,
394
- torch::Tensor mul,
395
- torch::Tensor scales,
396
- torch::Tensor zeros
397
- ) {
398
- int batch = vec.size(0);
399
- int heads = vec.size(1);
400
- int vec_row = vec.size(2);
401
- int vec_height = vec.size(3);
402
- int height = mat.size(2);
403
- int width = mat.size(3);
404
- int zero_width = zeros.size(2);
405
-
406
- dim3 blocks(
407
- (height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
408
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
409
- );
410
- dim3 threads(BLOCKWIDTH);
411
-
412
- AT_DISPATCH_FLOATING_TYPES(
413
- vec.type(), "vecquant8matmul_batched_cuda", ([&] {
414
- VecQuant8BatchMatMulKernel<<<blocks, threads>>>(
415
- vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
416
- scales.data<scalar_t>(), zeros.data<int>(),
417
- batch, heads, vec_row, vec_height, height, width, zero_width
418
- );
419
- })
420
- );
421
-
422
- }
423
-
424
- template <typename scalar_t>
425
- __global__ void VecQuant8BatchMatMulKernel(
426
- const scalar_t* __restrict__ vec,
427
- const int* __restrict__ mat,
428
- scalar_t* __restrict__ mul,
429
- const scalar_t* __restrict__ scales,
430
- const int* __restrict__ zeros,
431
- int batch,
432
- int heads,
433
- int vec_row,
434
- int vec_height,
435
- int height,
436
- int width,
437
- int zero_width
438
- ) {
439
- int weight_total = batch * heads * height * width;
440
- int input_total = batch * heads * vec_row * vec_height;
441
- int out_total = batch * heads * vec_row * width;
442
- int tid = threadIdx.x;
443
- // h is index of height with step being BLOCKHEIGHT8
444
- int h = BLOCKHEIGHT8 * blockIdx.x;
445
- // w is index of width with step being 1
446
- int w = BLOCKWIDTH * blockIdx.y + tid;
447
- if (w >= width && tid >= vec_height) {
448
- return;
449
- }
450
-
451
- __shared__ scalar_t blockvec[BLOCKWIDTH];
452
- // i is index of mat of block first row
453
- int i = width * h + w;
454
- // if (i >= width * height) {
455
- // return;
456
- // }
457
- int k;
458
- scalar_t w_tmp;
459
-
460
- int z_w = w / 4;
461
- int z_mod = (w % 4) * 8;
462
-
463
- float weight[BLOCKWIDTH];
464
-
465
- for (int b = 0; b < batch; ++b){
466
- for (int head = 0; head < heads; ++head){
467
- int batch_shift = b * heads + head;
468
- for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
469
- int k_w = (k / 4);
470
- int k_bit = (k % 4) * 8;
471
-
472
- int w_index = batch_shift * height * width + i + (k_w * width);
473
- if (w_index >= weight_total || w >= width) {
474
- weight[k] = 0;
475
- } else {
476
- scalar_t scale = scales[batch_shift * width + w];
477
- scalar_t zero;
478
- if (zero_width == width) {
479
- zero = zeros[batch_shift * width + w];
480
- } else {
481
- zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
482
- }
483
- w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xFF);
484
- weight[k] = scale * (w_tmp - zero);
485
- }
486
- }
487
-
488
- scalar_t res;
489
- for (int vr = 0; vr < vec_row; ++vr){
490
- res = 0;
491
- int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
492
- if (vec_index < input_total) {
493
- blockvec[tid] = vec[vec_index];
494
- } else {
495
- blockvec[tid] = 0;
496
- }
497
-
498
- __syncthreads();
499
- for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
500
- // res is the dot product of BLOCKWIDTH elements (part of width)
501
- res += weight[k] * blockvec[k];
502
- }
503
- // add res to the final result, final matrix shape: (batch, vec_row, width)
504
- int out_index = (batch_shift * vec_row + vr) * width + w;
505
- if (out_index < out_total) {
506
- atomicAdd(&mul[out_index], res);
507
- }
508
- __syncthreads();
509
- }
510
- }
511
- }
512
- }
513
-
514
-
515
- void vecquant8matmul_cuda(
516
- torch::Tensor vec,
517
- torch::Tensor mat,
518
- torch::Tensor mul,
519
- torch::Tensor scales,
520
- torch::Tensor zeros,
521
- torch::Tensor g_idx
522
- ) {
523
- int batch = vec.size(0);
524
- int vec_height = vec.size(1);
525
- int height = mat.size(0);
526
- int width = mat.size(1);
527
- int zero_width = zeros.size(1);
528
-
529
- dim3 blocks(
530
- (height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
531
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
532
- );
533
- dim3 threads(BLOCKWIDTH);
534
-
535
- AT_DISPATCH_FLOATING_TYPES(
536
- vec.type(), "vecquant8matmul_cuda", ([&] {
537
- VecQuant8MatMulKernel<<<blocks, threads>>>(
538
- vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
539
- scales.data<scalar_t>(), zeros.data<int>(), g_idx.data<int>(),
540
- batch, vec_height, height, width, zero_width
541
- );
542
- })
543
- );
544
- }
545
-
546
- template <typename scalar_t>
547
- __global__ void VecQuant8MatMulKernel(
548
- const scalar_t* __restrict__ vec,
549
- const int* __restrict__ mat,
550
- scalar_t* __restrict__ mul,
551
- const scalar_t* __restrict__ scales,
552
- const int* __restrict__ zeros,
553
- const int* __restrict__ g_idx,
554
- int batch,
555
- int vec_height,
556
- int height,
557
- int width,
558
- int zero_width
559
- ) {
560
- int h = BLOCKHEIGHT8 * blockIdx.x;
561
- int w = BLOCKWIDTH * blockIdx.y + threadIdx.x;
562
-
563
- __shared__ scalar_t blockvec[BLOCKWIDTH];
564
- int i = width * h + w;
565
- int g_h = h * 4;
566
- int k;
567
- unsigned int g;
568
- scalar_t w_tmp;
569
-
570
- int z_w = w / 4;
571
- int z_mod = (w % 4) * 8;
572
-
573
- float weight[BLOCKWIDTH];
574
-
575
- for (k = 0; k < BLOCKWIDTH; ++k){
576
- int k_w = (k / 4);
577
- int k_bit = (k % 4) * 8;
578
-
579
- g = as_int(g_idx[g_h + k]);
580
- scalar_t scale = scales[g * width + w];
581
- scalar_t zero = scalar_t(((as_unsigned(zeros[g * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
582
-
583
- w_tmp = ((as_unsigned(mat[i + (k_w * width)]) >> k_bit) & 0xFF);
584
-
585
- weight[k] = scale * (w_tmp - zero);
586
- }
587
-
588
-
589
- scalar_t res;
590
- for (int b = 0; b < batch; ++b){
591
- res = 0;
592
- blockvec[threadIdx.x] = vec[b * vec_height + blockIdx.x * BLOCKWIDTH + threadIdx.x];
593
- __syncthreads();
594
- for (k = 0; k < BLOCKWIDTH; ++k){
595
- res += weight[k] * blockvec[k];
596
- }
597
- atomicAdd(&mul[b * width + w], res);
598
- __syncthreads();
599
- }
600
- }
601
-
602
-
603
-
604
- void vecquant4matmul_batched_cuda(
605
- torch::Tensor vec,
606
- torch::Tensor mat,
607
- torch::Tensor mul,
608
- torch::Tensor scales,
609
- torch::Tensor zeros
610
- ) {
611
- int batch = vec.size(0);
612
- int heads = vec.size(1);
613
- int vec_row = vec.size(2);
614
- int vec_height = vec.size(3);
615
- int height = mat.size(2);
616
- int width = mat.size(3);
617
- int zero_width = zeros.size(2);
618
-
619
- dim3 blocks(
620
- (height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4,
621
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
622
- );
623
- dim3 threads(BLOCKWIDTH);
624
-
625
- AT_DISPATCH_FLOATING_TYPES(
626
- vec.type(), "vecquant4matmul_batched_cuda", ([&] {
627
- VecQuant4BatchMatMulKernel<<<blocks, threads>>>(
628
- vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
629
- scales.data<scalar_t>(), zeros.data<int>(),
630
- batch, heads, vec_row, vec_height, height, width, zero_width
631
- );
632
- })
633
- );
634
-
635
- }
636
-
637
- template <typename scalar_t>
638
- __global__ void VecQuant4BatchMatMulKernel(
639
- const scalar_t* __restrict__ vec,
640
- const int* __restrict__ mat,
641
- scalar_t* __restrict__ mul,
642
- const scalar_t* __restrict__ scales,
643
- const int* __restrict__ zeros,
644
- int batch,
645
- int heads,
646
- int vec_row,
647
- int vec_height,
648
- int height,
649
- int width,
650
- int zero_width
651
- ) {
652
- int weight_total = batch * heads * height * width;
653
- int input_total = batch * heads * vec_row * vec_height;
654
- int out_total = batch * heads * vec_row * width;
655
- int tid = threadIdx.x;
656
- // h is index of height with step being BLOCKHEIGHT4
657
- int h = BLOCKHEIGHT4 * blockIdx.x;
658
- // w is index of width with step being 1
659
- int w = BLOCKWIDTH * blockIdx.y + tid;
660
- if (w >= width && tid >= vec_height) {
661
- return;
662
- }
663
-
664
- __shared__ scalar_t blockvec[BLOCKWIDTH];
665
- // i is index of mat of block first row
666
- int i = width * h + w;
667
- int k;
668
- scalar_t w_tmp;
669
-
670
- int z_w = w / 8;
671
- int z_mod = (w % 8) * 4;
672
-
673
- float weight[BLOCKWIDTH];
674
-
675
- for (int b = 0; b < batch; ++b){
676
- for (int head = 0; head < heads; ++head){
677
- int batch_shift = b * heads + head;
678
- for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
679
- int k_w = (k / 8);
680
- int k_bit = (k % 8) * 4;
681
-
682
- int w_index = batch_shift * height * width + i + (k_w * width);
683
- if (w_index >= weight_total || w >= width) {
684
- weight[k] = 0;
685
- } else {
686
- scalar_t scale = scales[batch_shift * width + w];
687
- scalar_t zero;
688
- if (zero_width == width) {
689
- zero = zeros[batch_shift * width + w];
690
- } else {
691
- zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xF));
692
- }
693
- w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
694
- weight[k] = scale * (w_tmp - zero);
695
- }
696
- }
697
-
698
- scalar_t res;
699
- for (int vr = 0; vr < vec_row; ++vr){
700
- res = 0;
701
- int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
702
- if (vec_index < input_total) {
703
- blockvec[tid] = vec[vec_index];
704
- } else {
705
- blockvec[tid] = 0;
706
- }
707
-
708
- __syncthreads();
709
- for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
710
- // res is the dot product of BLOCKWIDTH elements (part of width)
711
- res += weight[k] * blockvec[k];
712
- }
713
- // add res to the final result, final matrix shape: (batch, vec_row, width)
714
- int out_index = (batch_shift * vec_row + vr) * width + w;
715
- if (out_index < out_total) {
716
- atomicAdd(&mul[out_index], res);
717
- }
718
- __syncthreads();
719
- }
720
- }
721
- }
722
- }
723
-
724
-
725
-
726
- void vecquant4matmul_batched_column_compression_cuda(
727
- torch::Tensor vec,
728
- torch::Tensor mat,
729
- torch::Tensor mul,
730
- torch::Tensor scales,
731
- torch::Tensor zeros
732
- ) {
733
- int batch = vec.size(0);
734
- int heads = vec.size(1);
735
- int vec_row = vec.size(2);
736
- int height = vec.size(3);
737
- int width = mat.size(3) * 8;
738
-
739
- dim3 blocks(
740
- (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
741
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
742
- );
743
- dim3 threads(BLOCKWIDTH);
744
-
745
- AT_DISPATCH_FLOATING_TYPES(
746
- vec.type(), "vecquant4matmul_batched_cuda", ([&] {
747
- VecQuant4BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
748
- vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
749
- scales.data<scalar_t>(), zeros.data<int>(),
750
- batch, heads, vec_row, height, width
751
- );
752
- })
753
- );
754
-
755
- }
756
-
757
- template <typename scalar_t>
758
- __global__ void VecQuant4BatchMatMulColumnCompressionKernel(
759
- const scalar_t* __restrict__ vec,
760
- const int* __restrict__ mat,
761
- scalar_t* __restrict__ mul,
762
- const scalar_t* __restrict__ scales,
763
- const int* __restrict__ zeros,
764
- int batch,
765
- int heads,
766
- int vec_row,
767
- int height,
768
- int width
769
- ) {
770
- int weight_total = batch * heads * height * width / 8;
771
- int input_total = batch * heads * vec_row * height;
772
- int out_total = batch * heads * vec_row * width;
773
- int tid = threadIdx.x;
774
- // h is index of height with step being BLOCKWIDTH
775
- int h = BLOCKWIDTH * blockIdx.x;
776
- // w is index of width with step being 1
777
- int w = BLOCKWIDTH * blockIdx.y + tid;
778
- if (w >= width && tid >= height) {
779
- return;
780
- }
781
-
782
- __shared__ scalar_t blockvec[BLOCKWIDTH];
783
- int k;
784
- scalar_t w_tmp;
785
-
786
- float weight[BLOCKWIDTH];
787
-
788
- for (int b = 0; b < batch; ++b){
789
- for (int head = 0; head < heads; ++head){
790
- int batch_shift = b * heads + head;
791
- for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
792
- int i_w = (w / 8);
793
- int w_bit = (w % 8) * 4;
794
-
795
- int w_index = (batch_shift * height + h + k) * width / 8 + i_w;
796
- if (w_index >= weight_total || w >= width) {
797
- weight[k] = 0;
798
- } else {
799
- scalar_t scale = scales[batch_shift * height + h + k];
800
- scalar_t zero = zeros[batch_shift * height + h + k];
801
- w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xF);
802
- weight[k] = scale * (w_tmp - zero);
803
- }
804
- }
805
-
806
- scalar_t res;
807
- for (int vr = 0; vr < vec_row; ++vr){
808
- res = 0;
809
- int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
810
- if (vec_index < input_total) {
811
- blockvec[tid] = vec[vec_index];
812
- } else {
813
- blockvec[tid] = 0;
814
- }
815
-
816
- __syncthreads();
817
- for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
818
- // res is the dot product of BLOCKWIDTH elements (part of width)
819
- res += weight[k] * blockvec[k];
820
- }
821
- // add res to the final result, final matrix shape: (batch, vec_row, width)
822
- int out_index = (batch_shift * vec_row + vr) * width + w;
823
- if (out_index < out_total) {
824
- atomicAdd(&mul[out_index], res);
825
- }
826
- __syncthreads();
827
- }
828
- }
829
- }
830
- }
831
-
832
-
833
- void vecquant8matmul_batched_old_cuda(
834
- torch::Tensor vec,
835
- torch::Tensor mat,
836
- torch::Tensor mul,
837
- torch::Tensor scales,
838
- torch::Tensor zeros
839
- ) {
840
- int batch = vec.size(0);
841
- int heads = vec.size(1);
842
- int vec_row = vec.size(2);
843
- int vec_height = vec.size(3);
844
- int height = mat.size(2);
845
- int width = mat.size(3);
846
- int zero_width = zeros.size(2);
847
-
848
- dim3 blocks(
849
- (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
850
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
851
- );
852
- dim3 threads(BLOCKWIDTH);
853
-
854
- AT_DISPATCH_FLOATING_TYPES(
855
- vec.type(), "vecquant8matmul_batched_old_cuda", ([&] {
856
- VecQuant8BatchMatMulKernel_old<<<blocks, threads>>>(
857
- vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
858
- scales.data<scalar_t>(), zeros.data<scalar_t>(),
859
- batch, heads, vec_row, vec_height, height, width, zero_width
860
- );
861
- })
862
- );
863
- }
864
-
865
-
866
- template <typename scalar_t>
867
- __global__ void VecQuant8BatchMatMulKernel_old(
868
- const scalar_t* __restrict__ vec,
869
- const uint8_t* __restrict__ mat,
870
- scalar_t* __restrict__ mul,
871
- const scalar_t* __restrict__ scales,
872
- const scalar_t* __restrict__ zeros,
873
- int batch,
874
- int heads,
875
- int vec_row,
876
- int vec_height,
877
- int height,
878
- int width,
879
- int zero_width
880
- ) {
881
- int weight_total = batch * heads * height * width;
882
- int input_total = batch * heads * vec_row * vec_height;
883
- int out_total = batch * heads * vec_row * width;
884
- int tid = threadIdx.x;
885
- // h is index of height with step being BLOCKHEIGHT8
886
- int h = BLOCKWIDTH * blockIdx.x;
887
- // w is index of width with step being 1
888
- int w = BLOCKWIDTH * blockIdx.y + tid;
889
- if (w >= width && tid >= vec_height) {
890
- return;
891
- }
892
-
893
- __shared__ scalar_t blockvec[BLOCKWIDTH];
894
- // i is index of mat of block first row
895
- int i = width * h + w;
896
- int k;
897
- scalar_t w_tmp;
898
-
899
- float weight[BLOCKWIDTH];
900
- for (int b = 0; b < batch; ++b){
901
- for (int head = 0; head < heads; ++head){
902
- int batch_shift = b * heads + head;
903
- for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
904
- int k_w = k;
905
- int w_index = batch_shift * height * width + i + (k_w * width);
906
- if (w_index >= weight_total || w >= width) {
907
- weight[k] = 0;
908
- } else {
909
- scalar_t scale = scales[batch_shift * width + w];
910
- scalar_t zero = zeros[batch_shift * width + w];
911
- w_tmp = as_unsigned(mat[w_index]);
912
- weight[k] = scale * (w_tmp - zero);
913
- }
914
- }
915
-
916
- scalar_t res;
917
- for (int vr = 0; vr < vec_row; ++vr){
918
- res = 0;
919
- int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
920
- if (vec_index < input_total) {
921
- blockvec[tid] = vec[vec_index];
922
- } else {
923
- blockvec[tid] = 0;
924
- }
925
-
926
- __syncthreads();
927
- for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
928
- // res is the dot product of BLOCKWIDTH elements (part of width)
929
- res += weight[k] * blockvec[k];
930
- }
931
- // add res to the final result, final matrix shape: (batch, vec_row, width)
932
- int out_index = (batch_shift * vec_row + vr) * width + w;
933
- if (out_index < out_total) {
934
- atomicAdd(&mul[out_index], res);
935
- }
936
- __syncthreads();
937
- }
938
- }
939
- }
940
- }
941
-
942
-
943
-
944
- void vecquant8matmul_batched_faster_cuda(
945
- torch::Tensor vec,
946
- torch::Tensor mat,
947
- torch::Tensor mul,
948
- torch::Tensor scales,
949
- torch::Tensor zeros
950
- ) {
951
- int batch = vec.size(0);
952
- int heads = vec.size(1);
953
- int vec_row = vec.size(2);
954
- int vec_height = vec.size(3);
955
- int height = mat.size(2);
956
- int width = mat.size(3);
957
- int zero_width = zeros.size(2);
958
-
959
- dim3 blocks(
960
- (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
961
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
962
- );
963
- dim3 threads(BLOCKWIDTH);
964
-
965
- VecQuant8BatchMatMulKernel_faster<<<blocks, threads>>>(
966
- (half*) vec.data_ptr(),
967
- (uint8_t*) mat.data_ptr(),
968
- (half*) mul.data_ptr(),
969
- (half*) scales.data_ptr(),
970
- (half*) zeros.data_ptr(),
971
- batch, heads, vec_row, vec_height, height, width, zero_width
972
- );
973
- }
974
-
975
-
976
-
977
- __global__ void VecQuant8BatchMatMulKernel_faster(
978
- const half* __restrict__ vec,
979
- const uint8_t* __restrict__ mat,
980
- half* __restrict__ mul,
981
- const half* __restrict__ scales,
982
- const half* __restrict__ zeros,
983
- int batch,
984
- int heads,
985
- int vec_row,
986
- int vec_height,
987
- int height,
988
- int width,
989
- int zero_width
990
- ) {
991
- //int weight_total = batch * heads * height * width;
992
- int input_total = batch * heads * vec_row * vec_height;
993
- int out_total = batch * heads * vec_row * width;
994
- int tid = threadIdx.x;
995
- int h = BLOCKWIDTH * blockIdx.x;
996
- int w = BLOCKWIDTH * blockIdx.y + tid;
997
- if (w >= width && tid >= height) {
998
- return;
999
- }
1000
-
1001
- __shared__ float blockvec[BLOCKWIDTH];
1002
- int i = width * h + w;
1003
- int k;
1004
- float w_tmp;
1005
-
1006
- float weight[BLOCKWIDTH];
1007
- for (int b = 0; b < batch; ++b){
1008
- for (int head = 0; head < heads; ++head){
1009
- int batch_shift = b * heads + head;
1010
- for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
1011
- int k_w = k;
1012
- int w_index = batch_shift * height * width + i + (k_w * width);
1013
- float scale = __half2float(scales[batch_shift * width + w]);
1014
- float zero = __half2float(zeros[batch_shift * width + w]);
1015
- w_tmp = as_unsigned(mat[w_index]);
1016
- weight[k] = scale *(w_tmp-zero);
1017
- }
1018
-
1019
- float res;
1020
- for (int vr = 0; vr < vec_row; ++vr){
1021
- res = 0;
1022
- int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
1023
- if (vec_index < input_total) {
1024
- blockvec[tid] = __half2float(vec[vec_index]);
1025
- } else {
1026
- blockvec[tid] = 0;
1027
- }
1028
- __syncthreads();
1029
- for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
1030
- float temp_res = weight[k]*blockvec[k];
1031
- res += temp_res;
1032
- }
1033
- int out_index = (batch_shift * vec_row + vr) * width + w;
1034
- if (out_index < out_total) {
1035
- atomicAdd(&mul[out_index], __float2half(res));
1036
- }
1037
- __syncthreads();
1038
- }
1039
- }
1040
- }
1041
- }
1042
-
1043
-
1044
-
1045
-
1046
- void vecquant8matmul_batched_column_compression_faster_cuda(
1047
- torch::Tensor vec,
1048
- torch::Tensor mat,
1049
- torch::Tensor mul,
1050
- torch::Tensor scales,
1051
- torch::Tensor zeros
1052
- ) {
1053
- int batch = vec.size(0);
1054
- int heads = vec.size(1);
1055
- int vec_row = vec.size(2);
1056
- int height = vec.size(3);
1057
- int width = mat.size(3);
1058
-
1059
- dim3 blocks(
1060
- (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1061
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1062
- );
1063
- dim3 threads(BLOCKWIDTH);
1064
-
1065
- VecQuant8BatchMatMulColumnCompressionKernel_faster<<<blocks, threads>>>(
1066
- (half*) vec.data_ptr(),
1067
- (uint8_t*) mat.data_ptr(),
1068
- (half*) mul.data_ptr(),
1069
- (half*) scales.data_ptr(),
1070
- (half*) zeros.data_ptr(),
1071
- batch, heads, vec_row, height, width
1072
- );
1073
-
1074
- }
1075
-
1076
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
1077
- const half* __restrict__ vec,
1078
- const uint8_t* __restrict__ mat,
1079
- half* __restrict__ mul,
1080
- const half* __restrict__ scales,
1081
- const half* __restrict__ zeros,
1082
- int batch,
1083
- int heads,
1084
- int vec_row,
1085
- int height,
1086
- int width
1087
- ) {
1088
- //int weight_total = batch * heads * height * width;
1089
- int input_total = batch * heads * vec_row * height;
1090
- int out_total = batch * heads * vec_row * width;
1091
- int tid = threadIdx.x;
1092
- int h = BLOCKWIDTH * blockIdx.x;
1093
- int w = BLOCKWIDTH * blockIdx.y + tid;
1094
- if (w >= width && tid >= height) {
1095
- return;
1096
- }
1097
-
1098
- __shared__ float blockvec[BLOCKWIDTH];
1099
- int k;
1100
- float w_tmp;
1101
- float weight[BLOCKWIDTH];
1102
-
1103
- for (int b = 0; b < batch; ++b){
1104
- for (int head = 0; head < heads; ++head){
1105
- int batch_shift = b * heads + head;
1106
- for (k = 0; k < BLOCKWIDTH; ++k){
1107
- int w_index = (batch_shift * height + h + k) * width + w;
1108
- float scale = __half2float(scales[batch_shift * height + h + k]);
1109
- float zero = __half2float(zeros[batch_shift * height + h + k]);
1110
- w_tmp = mat[w_index];
1111
- weight[k] = scale * (w_tmp-zero);
1112
- }
1113
-
1114
- float res;
1115
- for (int vr = 0; vr < vec_row; ++vr){
1116
- res = 0;
1117
- int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1118
- if (vec_index < input_total) {
1119
- blockvec[tid] = __half2float(vec[vec_index]);
1120
- } else {
1121
- blockvec[tid] = 0;
1122
- }
1123
- __syncthreads();
1124
- for (k = 0; k < BLOCKWIDTH; ++k){
1125
- res += weight[k]*blockvec[k];
1126
- }
1127
- int out_index = (batch_shift * vec_row + vr) * width + w;
1128
- if (out_index < out_total) {
1129
- atomicAdd(&mul[out_index], __float2half(res));
1130
- }
1131
- __syncthreads();
1132
- }
1133
- }
1134
- }
1135
- }
1136
-
1137
-
1138
-
1139
- void vecquant8matmul_batched_column_compression_old_cuda(
1140
- torch::Tensor vec,
1141
- torch::Tensor mat,
1142
- torch::Tensor mul,
1143
- torch::Tensor scales,
1144
- torch::Tensor zeros
1145
- ) {
1146
- int batch = vec.size(0);
1147
- int heads = vec.size(1);
1148
- int vec_row = vec.size(2);
1149
- int height = vec.size(3);
1150
- int width = mat.size(3);
1151
-
1152
- dim3 blocks(
1153
- (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1154
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1155
- );
1156
- dim3 threads(BLOCKWIDTH);
1157
-
1158
- AT_DISPATCH_FLOATING_TYPES(
1159
- vec.type(), "vecquant8matmul_batched_column_compression_old_cuda", ([&] {
1160
- VecQuant8BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
1161
- vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1162
- scales.data<scalar_t>(), zeros.data<scalar_t>(),
1163
- batch, heads, vec_row, height, width
1164
- );
1165
- })
1166
- );
1167
-
1168
- }
1169
-
1170
- template <typename scalar_t>
1171
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
1172
- const scalar_t* __restrict__ vec,
1173
- const uint8_t* __restrict__ mat,
1174
- scalar_t* __restrict__ mul,
1175
- const scalar_t* __restrict__ scales,
1176
- const scalar_t* __restrict__ zeros,
1177
- int batch,
1178
- int heads,
1179
- int vec_row,
1180
- int height,
1181
- int width
1182
- ) {
1183
- int weight_total = batch * heads * height * width;
1184
- int input_total = batch * heads * vec_row * height;
1185
- int out_total = batch * heads * vec_row * width;
1186
- int tid = threadIdx.x;
1187
- // h is index of height with step being BLOCKWIDTH
1188
- int h = BLOCKWIDTH * blockIdx.x;
1189
- // w is index of width with step being 1
1190
- int w = BLOCKWIDTH * blockIdx.y + tid;
1191
- if (w >= width && tid >= height) {
1192
- return;
1193
- }
1194
-
1195
- __shared__ scalar_t blockvec[BLOCKWIDTH];
1196
- int k;
1197
- scalar_t w_tmp;
1198
-
1199
- float weight[BLOCKWIDTH];
1200
-
1201
- for (int b = 0; b < batch; ++b){
1202
- for (int head = 0; head < heads; ++head){
1203
- int batch_shift = b * heads + head;
1204
- for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
1205
- int w_index = (batch_shift * height + h + k) * width + w;
1206
- if (w_index >= weight_total || w >= width) {
1207
- weight[k] = 0;
1208
- } else {
1209
- scalar_t scale = scales[batch_shift * height + h + k];
1210
- scalar_t zero = zeros[batch_shift * height + h + k];
1211
- w_tmp = mat[w_index];
1212
- weight[k] = scale * (w_tmp - zero);
1213
- }
1214
- }
1215
-
1216
- scalar_t res;
1217
- for (int vr = 0; vr < vec_row; ++vr){
1218
- res = 0;
1219
- int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1220
- if (vec_index < input_total) {
1221
- blockvec[tid] = vec[vec_index];
1222
- } else {
1223
- blockvec[tid] = 0;
1224
- }
1225
-
1226
- __syncthreads();
1227
- for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
1228
- // res is the dot product of BLOCKWIDTH elements (part of width)
1229
- res += weight[k] * blockvec[k];
1230
- }
1231
- // add res to the final result, final matrix shape: (batch, vec_row, width)
1232
- int out_index = (batch_shift * vec_row + vr) * width + w;
1233
- if (out_index < out_total) {
1234
- atomicAdd(&mul[out_index], res);
1235
- }
1236
- __syncthreads();
1237
- }
1238
- }
1239
- }
1240
- }
1241
-
1242
-
1243
- void vecquant4matmul_batched_old_cuda(
1244
- torch::Tensor vec,
1245
- torch::Tensor mat,
1246
- torch::Tensor mul,
1247
- torch::Tensor scales,
1248
- torch::Tensor zeros
1249
- ) {
1250
- int batch = vec.size(0);
1251
- int heads = vec.size(1);
1252
- int vec_row = vec.size(2);
1253
- int vec_height = vec.size(3);
1254
- int height = mat.size(2);
1255
- int width = mat.size(3);
1256
- int zero_width = zeros.size(2);
1257
-
1258
- dim3 blocks(
1259
- (height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
1260
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1261
- );
1262
- dim3 threads(BLOCKWIDTH);
1263
-
1264
- AT_DISPATCH_FLOATING_TYPES(
1265
- vec.type(), "vecquant4matmul_batched_old_cuda", ([&] {
1266
- VecQuant4BatchMatMulKernel_old<<<blocks, threads>>>(
1267
- vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1268
- scales.data<scalar_t>(), zeros.data<scalar_t>(),
1269
- batch, heads, vec_row, vec_height, height, width, zero_width
1270
- );
1271
- })
1272
- );
1273
-
1274
- }
1275
-
1276
- template <typename scalar_t>
1277
- __global__ void VecQuant4BatchMatMulKernel_old(
1278
- const scalar_t* __restrict__ vec,
1279
- const uint8_t* __restrict__ mat,
1280
- scalar_t* __restrict__ mul,
1281
- const scalar_t* __restrict__ scales,
1282
- const scalar_t* __restrict__ zeros,
1283
- int batch,
1284
- int heads,
1285
- int vec_row,
1286
- int vec_height,
1287
- int height,
1288
- int width,
1289
- int zero_width
1290
- ) {
1291
- int weight_total = batch * heads * height * width;
1292
- int input_total = batch * heads * vec_row * vec_height;
1293
- int out_total = batch * heads * vec_row * width;
1294
- int tid = threadIdx.x;
1295
- // h is index of height with step being BLOCKHEIGHT_OLD4
1296
- int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
1297
- // w is index of width with step being 1
1298
- int w = BLOCKWIDTH * blockIdx.y + tid;
1299
- if (w >= width && tid >= vec_height) {
1300
- return;
1301
- }
1302
-
1303
- __shared__ scalar_t blockvec[BLOCKWIDTH];
1304
- // i is index of mat of block first row
1305
- int i = width * h + w;
1306
- int k;
1307
- scalar_t w_tmp;
1308
-
1309
- float weight[BLOCKWIDTH];
1310
- for (int b = 0; b < batch; ++b){
1311
- for (int head = 0; head < heads; ++head){
1312
- int batch_shift = b * heads + head;
1313
- for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
1314
- int k_w = (k / 2);
1315
- int k_bit = (k % 2) * 4;
1316
- int w_index = batch_shift * height * width + i + (k_w * width);
1317
- if (w_index >= weight_total || w >= width) {
1318
- weight[k] = 0;
1319
- } else {
1320
- scalar_t scale = scales[batch_shift * width + w];
1321
- scalar_t zero = zeros[batch_shift * width + w];
1322
- w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
1323
- weight[k] = scale * (w_tmp - zero);
1324
- }
1325
- }
1326
-
1327
- scalar_t res;
1328
- for (int vr = 0; vr < vec_row; ++vr){
1329
- res = 0;
1330
- int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
1331
- if (vec_index < input_total) {
1332
- blockvec[tid] = vec[vec_index];
1333
- } else {
1334
- blockvec[tid] = 0;
1335
- }
1336
-
1337
- __syncthreads();
1338
- for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
1339
- // res is the dot product of BLOCKWIDTH elements (part of width)
1340
- res += weight[k] * blockvec[k];
1341
- }
1342
- // add res to the final result, final matrix shape: (batch, vec_row, width)
1343
- int out_index = (batch_shift * vec_row + vr) * width + w;
1344
- if (out_index < out_total) {
1345
- atomicAdd(&mul[out_index], res);
1346
- }
1347
- __syncthreads();
1348
- }
1349
- }
1350
- }
1351
- }
1352
-
1353
-
1354
-
1355
-
1356
-
1357
- void vecquant4matmul_batched_column_compression_old_cuda(
1358
- torch::Tensor vec,
1359
- torch::Tensor mat,
1360
- torch::Tensor mul,
1361
- torch::Tensor scales,
1362
- torch::Tensor zeros
1363
- ) {
1364
- int batch = vec.size(0);
1365
- int heads = vec.size(1);
1366
- int vec_row = vec.size(2);
1367
- int height = vec.size(3);
1368
- int width = mat.size(3);
1369
-
1370
- dim3 blocks(
1371
- (height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
1372
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1373
- );
1374
- dim3 threads(BLOCKWIDTH);
1375
-
1376
- AT_DISPATCH_FLOATING_TYPES(
1377
- vec.type(), "vecquant4matmul_batched_column_compression_old_cuda", ([&] {
1378
- VecQuant4BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
1379
- vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1380
- scales.data<scalar_t>(), zeros.data<scalar_t>(),
1381
- batch, heads, vec_row, height, width
1382
- );
1383
- })
1384
- );
1385
-
1386
- }
1387
-
1388
- template <typename scalar_t>
1389
- __global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
1390
- const scalar_t* __restrict__ vec,
1391
- const uint8_t* __restrict__ mat,
1392
- scalar_t* __restrict__ mul,
1393
- const scalar_t* __restrict__ scales,
1394
- const scalar_t* __restrict__ zeros,
1395
- int batch,
1396
- int heads,
1397
- int vec_row,
1398
- int height,
1399
- int width
1400
- ) {
1401
- int weight_total = batch * heads * height * width;
1402
- int input_total = batch * heads * vec_row * height;
1403
- int out_total = batch * heads * vec_row * width;
1404
- int tid = threadIdx.x;
1405
- // h is index of height with step being BLOCKWIDTH
1406
- int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
1407
- // w is index of width with step being 1
1408
- int w = BLOCKWIDTH * blockIdx.y + tid;
1409
- if (w >= width && tid >= height) {
1410
- return;
1411
- }
1412
-
1413
- __shared__ scalar_t blockvec[BLOCKWIDTH];
1414
- int k;
1415
- scalar_t w_tmp;
1416
-
1417
- float weight[BLOCKWIDTH];
1418
-
1419
- for (int b = 0; b < batch; ++b){
1420
- for (int head = 0; head < heads; ++head){
1421
- int batch_shift = b * heads + head;
1422
- for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
1423
- int k_w = (k / 2);
1424
- int k_bit = (k % 2) * 4;
1425
- int w_index = (batch_shift * height + h + k) * width + k_w;
1426
- if (w_index >= weight_total || w >= width) {
1427
- weight[k] = 0;
1428
- } else {
1429
- scalar_t scale = scales[batch_shift * height + h + k];
1430
- scalar_t zero = zeros[batch_shift * height + h + k];
1431
- w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
1432
- weight[k] = scale * (w_tmp - zero);
1433
- }
1434
- }
1435
-
1436
- scalar_t res;
1437
- for (int vr = 0; vr < vec_row; ++vr){
1438
- res = 0;
1439
- int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1440
- if (vec_index < input_total) {
1441
- blockvec[tid] = vec[vec_index];
1442
- } else {
1443
- blockvec[tid] = 0;
1444
- }
1445
-
1446
- __syncthreads();
1447
- for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
1448
- // res is the dot product of BLOCKWIDTH elements (part of width)
1449
- res += weight[k] * blockvec[k];
1450
- }
1451
- // add res to the final result, final matrix shape: (batch, vec_row, width)
1452
- int out_index = (batch_shift * vec_row + vr) * width + w;
1453
- if (out_index < out_total) {
1454
- atomicAdd(&mul[out_index], res);
1455
- }
1456
- __syncthreads();
1457
- }
1458
- }
1459
- }
1460
- }
1461
-
1462
-
1463
-
1464
-
1465
-
1466
- void vecquant8matmul_batched_faster_old_cuda(
1467
- torch::Tensor vec,
1468
- torch::Tensor mat,
1469
- torch::Tensor mul,
1470
- torch::Tensor scales,
1471
- torch::Tensor zeros
1472
- ) {
1473
- int batch = vec.size(0);
1474
- int heads = vec.size(1);
1475
- int vec_row = vec.size(2);
1476
- int vec_height = vec.size(3);
1477
- int height = mat.size(2);
1478
- int width = mat.size(3);
1479
-
1480
- dim3 blocks(
1481
- (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1482
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1483
- );
1484
- dim3 threads(BLOCKWIDTH);
1485
-
1486
- VecQuant8BatchMatMulKernel_faster_old<<<blocks, threads>>>(
1487
- (half*) vec.data_ptr(),
1488
- (uint8_t*) mat.data_ptr(),
1489
- (half*) mul.data_ptr(),
1490
- (half*) scales.data_ptr(),
1491
- (half*) zeros.data_ptr(),
1492
- batch, heads, vec_row, vec_height, height, width
1493
- );
1494
- }
1495
-
1496
-
1497
- __global__ void VecQuant8BatchMatMulKernel_faster_old(
1498
- const half* __restrict__ vec,
1499
- const uint8_t* __restrict__ mat,
1500
- half* __restrict__ mul,
1501
- const half* __restrict__ scales,
1502
- const half* __restrict__ zeros,
1503
- int batch,
1504
- int heads,
1505
- int vec_row,
1506
- int vec_height,
1507
- int height,
1508
- int width
1509
- ) {
1510
- int weight_total = batch * heads * height * width;
1511
- int input_total = batch * heads * vec_row * vec_height;
1512
- int out_total = batch * heads * vec_row * width;
1513
- int tid = threadIdx.x;
1514
- const int BLOCKWIDTH_half = BLOCKWIDTH/2;
1515
-
1516
- int h = BLOCKWIDTH * blockIdx.x; //head_dim, dim=-1
1517
- int w = BLOCKWIDTH * blockIdx.y + tid; //seq-len, +0-256 ,dim=-2
1518
- /*
1519
- if (w >= width && tid >= vec_height) {
1520
- return;
1521
- }
1522
- */
1523
- __shared__ half blockvec[BLOCKWIDTH]; //256
1524
- int i = width * h + w;
1525
- int k;
1526
-
1527
- half w_tmp1 = __float2half(0);
1528
- half w_tmp2 = __float2half(0);
1529
-
1530
- half2 weight[BLOCKWIDTH_half];
1531
- for (int b = 0; b < batch; ++b){
1532
- for (int head = 0; head < heads; ++head){
1533
- int batch_shift = b * heads + head;
1534
- //int zero_index = batch_shift;
1535
- for (k = 0; k < BLOCKWIDTH_half; ++k){
1536
- int w_index1 = batch_shift * height * width + i + (2 * k * width); // [batch,head,h+k, w]
1537
- int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
1538
- int zero_index = batch_shift * width + w; // [batch,head, w]
1539
- if (w_index1 >= weight_total || w >= width || (2 * k + h) >= height) {
1540
- weight[k] = __float2half2_rn(0);
1541
- } else {
1542
- float zero_f=__half2float(zeros[zero_index]);
1543
- float scale_f= __half2float(scales[zero_index]);
1544
- if (w_index2 >= weight_total){
1545
- w_tmp1 = __float2half((as_unsigned(mat[w_index1]) -zero_f)*scale_f);
1546
- w_tmp2 = __float2half(0);
1547
- weight[k] = __halves2half2(w_tmp1,w_tmp2);
1548
- //printf("zero_index is %d w is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,w,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
1549
- }else{
1550
- w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
1551
- w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
1552
-
1553
- //weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero,zero)),__halves2half2(scale,scale));
1554
- weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
1555
- //printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
1556
- }
1557
- }
1558
- }
1559
-
1560
-
1561
- for (int vr = 0; vr < vec_row; ++vr){
1562
- float res=0;
1563
- int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1564
- int out_index = (batch_shift * vec_row + vr) * width + w;
1565
- if (vec_index < input_total) {
1566
- //blockvec[tid] = __half2float(vec[vec_index]);// [batch, head, vr, tid(seq_len dim+)]
1567
- blockvec[tid] = vec[vec_index];
1568
- //printf("width is %d height is %d h is %d w is %d vec_index is %d out_index is %d vec_row is %d vec_height is %d,vr is %d tid is %d blockvec is %f\n",width,height, h,w,vec_index,out_index,vec_row,vec_height,vr,tid,blockvec[tid]);
1569
- } else {
1570
- blockvec[tid] = __float2half(0);
1571
- }
1572
- __syncthreads();
1573
- if (out_index < out_total) {
1574
- for (k = 0; k < BLOCKWIDTH_half; ++k){
1575
- half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
1576
- res += __low2float(res2) + __high2float(res2);
1577
- }
1578
- atomicAdd(&mul[out_index], __float2half(res));
1579
- }
1580
- __syncthreads();
1581
- }
1582
- }
1583
- }
1584
- }
1585
-
1586
-
1587
- void vecquant8matmul_batched_column_compression_faster_old_cuda(
1588
- torch::Tensor vec, // [batch,heads, seq_q, seq_v]
1589
- torch::Tensor mat, // [batch,heads, seq_v, head_dim]
1590
- torch::Tensor mul, // [batch,heads, seq_q,head_dim]
1591
- torch::Tensor scales, // [batch,heads, head_dim]
1592
- torch::Tensor zeros
1593
- ) {
1594
- int batch = vec.size(0);
1595
- int heads = vec.size(1);
1596
- int vec_row = vec.size(2); //ql
1597
- int height = mat.size(2); //vl
1598
- int width = mat.size(3); //head_dim
1599
-
1600
- dim3 blocks(
1601
- (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1602
- (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1603
- );
1604
- dim3 threads(BLOCKWIDTH);
1605
-
1606
- VecQuant8BatchMatMulColumnCompressionKernel_faster_old<<<blocks, threads>>>(
1607
- (half*) vec.data_ptr(),
1608
- (uint8_t*) mat.data_ptr(),
1609
- (half*) mul.data_ptr(),
1610
- (half*) scales.data_ptr(),
1611
- (half*) zeros.data_ptr(),
1612
- batch, heads, vec_row, height, width
1613
- );
1614
-
1615
- }
1616
-
1617
-
1618
- __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
1619
- const half* __restrict__ vec, // [batch,heads, seq_q, seq_v]
1620
- const uint8_t* __restrict__ mat, // [batch,heads, seq_v, head_dim]
1621
- half* __restrict__ mul, // [batch,heads, seq_q,head_dim]
1622
- const half* __restrict__ scales, // [batch,heads, seq_v]
1623
- const half* __restrict__ zeros,
1624
- int batch,
1625
- int heads,
1626
- int vec_row, //seq_q
1627
- int height, //seq_v
1628
- int width //head_dim
1629
- ) {
1630
- int weight_total = batch * heads * height * width;
1631
- int input_total = batch * heads * vec_row * height;
1632
- int out_total = batch * heads * vec_row * width;
1633
- int tid = threadIdx.x;
1634
- int h = BLOCKWIDTH * blockIdx.x; // vl
1635
- int w = BLOCKWIDTH * blockIdx.y + tid; //head_dim + block
1636
- if (w >= width && tid >= height) {
1637
- return;
1638
- }
1639
- __shared__ half blockvec[BLOCKWIDTH];
1640
- int k;
1641
- half w_tmp1 = __float2half(0);
1642
- half w_tmp2 = __float2half(0);
1643
- int i = width * h + w;
1644
- const int BLOCKWIDTH_half = BLOCKWIDTH/2;
1645
- half2 weight[BLOCKWIDTH_half];
1646
-
1647
- for (int b = 0; b < batch; ++b){
1648
- for (int head = 0; head < heads; ++head){
1649
- int batch_shift = b * heads + head;
1650
- //int zero_index = batch_shift;
1651
- for (k = 0; k < BLOCKWIDTH_half; ++k){
1652
- int w_index1 = batch_shift * height * width + i + (2 * k) * width; // [batch,head, h+k, w]
1653
- int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
1654
- int zero_index1 = batch_shift * height + h + 2*k; // [batch,head, w]
1655
- int zero_index2 = batch_shift * height + h + 2*k+1; // [batch,head, w]
1656
-
1657
- if (w_index1 >= weight_total || (2 * k + h)>=height) {
1658
- weight[k]=__float2half2_rn(0);
1659
- } else{
1660
- //int zero_index = batch_shift + h; // [batch,head, w]
1661
- //float scale_f1 = __half2float(scales[zero_index1]);
1662
- //float zero_f1 = __half2float(zeros[zero_index1]);
1663
- if (w_index2>=weight_total){
1664
- w_tmp1 = __float2half((as_unsigned(mat[w_index1]) - __half2float(zeros[zero_index1]))* __half2float(scales[zero_index1]));
1665
- w_tmp2 = __float2half(0);
1666
- weight[k] = __halves2half2(w_tmp1,w_tmp2);
1667
- //printf("zero_index is %d k is %d w is %d head is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,k,w,head,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
1668
- }else{
1669
- w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
1670
- w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
1671
- half zero1=zeros[zero_index1];
1672
- half zero2=zeros[zero_index2];
1673
- half scale1=scales[zero_index1];
1674
- half scale2=scales[zero_index2];
1675
- weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero1,zero2)),__halves2half2(scale1,scale2));
1676
- //weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
1677
- //printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
1678
- }
1679
- }
1680
- }
1681
-
1682
-
1683
- for (int vr = 0; vr < vec_row; ++vr){
1684
- float res=0;
1685
- int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1686
- int out_index = (batch_shift * vec_row + vr) * width + w;
1687
-
1688
- if (vec_index < input_total) {
1689
- //blockvec[tid] = __half2float(vec[vec_index]);
1690
- blockvec[tid] = vec[vec_index];
1691
- //printf("vec_index is %d out_index is %d vec_row is %d ,vr is %d tid is %d blockvec is %f\n",vec_index,out_index,vec_row,vr,tid,blockvec[tid]);
1692
- } else {
1693
- blockvec[tid] = __float2half(0);
1694
- //blockvec[tid] = 0;
1695
- }
1696
- __syncthreads();
1697
- if (out_index < out_total) {
1698
- for (k = 0; k < BLOCKWIDTH_half; ++k){
1699
- half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
1700
- res += __low2float(res2) + __high2float(res2);
1701
- }
1702
- atomicAdd(&mul[out_index], __float2half(res));
1703
- }
1704
- __syncthreads();
1705
- }
1706
- }
1707
- }
1708
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -2,48 +2,37 @@
2
  "architectures": [
3
  "QWenLMHeadModel"
4
  ],
 
5
  "auto_map": {
6
  "AutoConfig": "configuration_qwen.QWenConfig",
7
  "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
8
  },
9
- "attn_dropout_prob": 0.0,
10
  "bf16": false,
11
  "emb_dropout_prob": 0.0,
12
  "fp16": true,
13
  "fp32": false,
14
  "hidden_size": 4096,
15
- "intermediate_size": 22016,
16
  "initializer_range": 0.02,
 
17
  "kv_channels": 128,
18
  "layer_norm_epsilon": 1e-06,
19
- "max_position_embeddings": 32768,
20
  "model_type": "qwen",
21
  "no_bias": true,
22
  "num_attention_heads": 32,
23
  "num_hidden_layers": 32,
24
  "onnx_safe": null,
25
- "quantization_config": {
26
- "bits": 4,
27
- "group_size": 128,
28
- "damp_percent": 0.01,
29
- "desc_act": false,
30
- "static_groups": false,
31
- "sym": true,
32
- "true_sequential": true,
33
- "model_name_or_path": null,
34
- "model_file_base_name": "model",
35
- "quant_method": "gptq"
36
- },
37
  "rotary_emb_base": 10000,
38
  "rotary_pct": 1.0,
39
  "scale_attn_weights": true,
40
- "seq_length": 8192,
41
  "tie_word_embeddings": false,
42
- "tokenizer_class": "QWenTokenizer",
43
- "transformers_version": "4.32.0",
 
44
  "use_cache": true,
45
  "use_dynamic_ntk": true,
46
- "use_flash_attn": "auto",
47
  "use_logn_attn": true,
48
  "vocab_size": 151936
49
- }
 
2
  "architectures": [
3
  "QWenLMHeadModel"
4
  ],
5
+ "attn_dropout_prob": 0.0,
6
  "auto_map": {
7
  "AutoConfig": "configuration_qwen.QWenConfig",
8
  "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
9
  },
 
10
  "bf16": false,
11
  "emb_dropout_prob": 0.0,
12
  "fp16": true,
13
  "fp32": false,
14
  "hidden_size": 4096,
 
15
  "initializer_range": 0.02,
16
+ "intermediate_size": 22016,
17
  "kv_channels": 128,
18
  "layer_norm_epsilon": 1e-06,
19
+ "max_position_embeddings": 8192,
20
  "model_type": "qwen",
21
  "no_bias": true,
22
  "num_attention_heads": 32,
23
  "num_hidden_layers": 32,
24
  "onnx_safe": null,
 
 
 
 
 
 
 
 
 
 
 
 
25
  "rotary_emb_base": 10000,
26
  "rotary_pct": 1.0,
27
  "scale_attn_weights": true,
28
+ "seq_length": 2048,
29
  "tie_word_embeddings": false,
30
+ "tokenizer_type": "QWenTokenizer",
31
+ "torch_dtype": "float16",
32
+ "transformers_version": "4.31.0",
33
  "use_cache": true,
34
  "use_dynamic_ntk": true,
35
+ "use_flash_attn": true,
36
  "use_logn_attn": true,
37
  "vocab_size": 151936
38
+ }
configuration_qwen.py CHANGED
@@ -35,9 +35,6 @@ class QWenConfig(PretrainedConfig):
35
  intermediate_size=22016,
36
  no_bias=True,
37
  tie_word_embeddings=False,
38
- use_cache_quantization=False,
39
- use_cache_kernel=False,
40
- softmax_in_fp32=False,
41
  **kwargs,
42
  ):
43
  self.vocab_size = vocab_size
@@ -62,9 +59,6 @@ class QWenConfig(PretrainedConfig):
62
  self.use_logn_attn = use_logn_attn
63
  self.use_flash_attn = use_flash_attn
64
  self.no_bias = no_bias
65
- self.use_cache_quantization = use_cache_quantization
66
- self.use_cache_kernel = use_cache_kernel
67
- self.softmax_in_fp32 = softmax_in_fp32
68
  super().__init__(
69
  tie_word_embeddings=tie_word_embeddings,
70
  **kwargs
 
35
  intermediate_size=22016,
36
  no_bias=True,
37
  tie_word_embeddings=False,
 
 
 
38
  **kwargs,
39
  ):
40
  self.vocab_size = vocab_size
 
59
  self.use_logn_attn = use_logn_attn
60
  self.use_flash_attn = use_flash_attn
61
  self.no_bias = no_bias
 
 
 
62
  super().__init__(
63
  tie_word_embeddings=tie_word_embeddings,
64
  **kwargs
cpp_kernels.py DELETED
@@ -1,55 +0,0 @@
1
- from torch.utils import cpp_extension
2
- import pathlib
3
- import os
4
- import subprocess
5
-
6
- def _get_cuda_bare_metal_version(cuda_dir):
7
- raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
- universal_newlines=True)
9
- output = raw_output.split()
10
- release_idx = output.index("release") + 1
11
- release = output[release_idx].split(".")
12
- bare_metal_major = release[0]
13
- bare_metal_minor = release[1][0]
14
-
15
- return raw_output, bare_metal_major, bare_metal_minor
16
-
17
- def _create_build_dir(buildpath):
18
- try:
19
- os.mkdir(buildpath)
20
- except OSError:
21
- if not os.path.isdir(buildpath):
22
- print(f"Creation of the build directory {buildpath} failed")
23
-
24
- # Check if cuda 11 is installed for compute capability 8.0
25
- cc_flag = []
26
- _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
- if int(bare_metal_major) >= 11:
28
- cc_flag.append('-gencode')
29
- cc_flag.append('arch=compute_80,code=sm_80')
30
- if int(bare_metal_minor) >= 7:
31
- cc_flag.append('-gencode')
32
- cc_flag.append('arch=compute_90,code=sm_90')
33
-
34
- # Build path
35
- srcpath = pathlib.Path(__file__).parent.absolute()
36
- buildpath = srcpath / 'build'
37
- _create_build_dir(buildpath)
38
-
39
- def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
- return cpp_extension.load(
41
- name=name,
42
- sources=sources,
43
- build_directory=buildpath,
44
- extra_cflags=['-O3', ],
45
- extra_cuda_cflags=['-O3',
46
- '-gencode', 'arch=compute_70,code=sm_70',
47
- '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
- verbose=1
49
- )
50
-
51
- extra_flags = []
52
-
53
- cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
- "./cache_autogptq_cuda_kernel_256.cu"]
55
- cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generation_config.json CHANGED
@@ -1,12 +1,11 @@
1
  {
2
- "chat_format": "chatml",
3
- "eos_token_id": 151643,
4
- "pad_token_id": 151643,
5
- "max_window_size": 24000,
6
- "max_new_tokens": 512,
7
- "do_sample": true,
8
- "top_k": 0,
9
- "top_p": 0.8,
10
- "repetition_penalty": 1.1,
11
- "transformers_version": "4.31.0"
12
- }
 
1
  {
2
+ "chat_format": "chatml",
3
+ "eos_token_id": 151643,
4
+ "pad_token_id": 151643,
5
+ "max_window_size": 6144,
6
+ "max_new_tokens": 512,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.5,
10
+ "transformers_version": "4.31.0"
11
+ }
 
gptq_model-4bit-128g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b6cbe28a19dd64aab78da878bed788ec8ec13177d345412402786888fbc3123
3
+ size 5860657576
model.safetensors.index.json DELETED
@@ -1,874 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 5860564992
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "model-00003-of-00003.safetensors",
7
- "transformer.h.0.attn.c_attn.bias": "model-00001-of-00003.safetensors",
8
- "transformer.h.0.attn.c_attn.g_idx": "model-00001-of-00003.safetensors",
9
- "transformer.h.0.attn.c_attn.qweight": "model-00001-of-00003.safetensors",
10
- "transformer.h.0.attn.c_attn.qzeros": "model-00001-of-00003.safetensors",
11
- "transformer.h.0.attn.c_attn.scales": "model-00001-of-00003.safetensors",
12
- "transformer.h.0.attn.c_proj.bias": "model-00001-of-00003.safetensors",
13
- "transformer.h.0.attn.c_proj.g_idx": "model-00001-of-00003.safetensors",
14
- "transformer.h.0.attn.c_proj.qweight": "model-00001-of-00003.safetensors",
15
- "transformer.h.0.attn.c_proj.qzeros": "model-00001-of-00003.safetensors",
16
- "transformer.h.0.attn.c_proj.scales": "model-00001-of-00003.safetensors",
17
- "transformer.h.0.ln_1.weight": "model-00001-of-00003.safetensors",
18
- "transformer.h.0.ln_2.weight": "model-00001-of-00003.safetensors",
19
- "transformer.h.0.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
20
- "transformer.h.0.mlp.c_proj.g_idx": "model-00001-of-00003.safetensors",
21
- "transformer.h.0.mlp.c_proj.qweight": "model-00001-of-00003.safetensors",
22
- "transformer.h.0.mlp.c_proj.qzeros": "model-00001-of-00003.safetensors",
23
- "transformer.h.0.mlp.c_proj.scales": "model-00001-of-00003.safetensors",
24
- "transformer.h.0.mlp.w1.bias": "model-00001-of-00003.safetensors",
25
- "transformer.h.0.mlp.w1.g_idx": "model-00001-of-00003.safetensors",
26
- "transformer.h.0.mlp.w1.qweight": "model-00001-of-00003.safetensors",
27
- "transformer.h.0.mlp.w1.qzeros": "model-00001-of-00003.safetensors",
28
- "transformer.h.0.mlp.w1.scales": "model-00001-of-00003.safetensors",
29
- "transformer.h.0.mlp.w2.bias": "model-00001-of-00003.safetensors",
30
- "transformer.h.0.mlp.w2.g_idx": "model-00001-of-00003.safetensors",
31
- "transformer.h.0.mlp.w2.qweight": "model-00001-of-00003.safetensors",
32
- "transformer.h.0.mlp.w2.qzeros": "model-00001-of-00003.safetensors",
33
- "transformer.h.0.mlp.w2.scales": "model-00001-of-00003.safetensors",
34
- "transformer.h.1.attn.c_attn.bias": "model-00001-of-00003.safetensors",
35
- "transformer.h.1.attn.c_attn.g_idx": "model-00001-of-00003.safetensors",
36
- "transformer.h.1.attn.c_attn.qweight": "model-00001-of-00003.safetensors",
37
- "transformer.h.1.attn.c_attn.qzeros": "model-00001-of-00003.safetensors",
38
- "transformer.h.1.attn.c_attn.scales": "model-00001-of-00003.safetensors",
39
- "transformer.h.1.attn.c_proj.bias": "model-00001-of-00003.safetensors",
40
- "transformer.h.1.attn.c_proj.g_idx": "model-00001-of-00003.safetensors",
41
- "transformer.h.1.attn.c_proj.qweight": "model-00001-of-00003.safetensors",
42
- "transformer.h.1.attn.c_proj.qzeros": "model-00001-of-00003.safetensors",
43
- "transformer.h.1.attn.c_proj.scales": "model-00001-of-00003.safetensors",
44
- "transformer.h.1.ln_1.weight": "model-00001-of-00003.safetensors",
45
- "transformer.h.1.ln_2.weight": "model-00001-of-00003.safetensors",
46
- "transformer.h.1.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
47
- "transformer.h.1.mlp.c_proj.g_idx": "model-00001-of-00003.safetensors",
48
- "transformer.h.1.mlp.c_proj.qweight": "model-00001-of-00003.safetensors",
49
- "transformer.h.1.mlp.c_proj.qzeros": "model-00001-of-00003.safetensors",
50
- "transformer.h.1.mlp.c_proj.scales": "model-00001-of-00003.safetensors",
51
- "transformer.h.1.mlp.w1.bias": "model-00001-of-00003.safetensors",
52
- "transformer.h.1.mlp.w1.g_idx": "model-00001-of-00003.safetensors",
53
- "transformer.h.1.mlp.w1.qweight": "model-00001-of-00003.safetensors",
54
- "transformer.h.1.mlp.w1.qzeros": "model-00001-of-00003.safetensors",
55
- "transformer.h.1.mlp.w1.scales": "model-00001-of-00003.safetensors",
56
- "transformer.h.1.mlp.w2.bias": "model-00001-of-00003.safetensors",
57
- "transformer.h.1.mlp.w2.g_idx": "model-00001-of-00003.safetensors",
58
- "transformer.h.1.mlp.w2.qweight": "model-00001-of-00003.safetensors",
59
- "transformer.h.1.mlp.w2.qzeros": "model-00001-of-00003.safetensors",
60
- "transformer.h.1.mlp.w2.scales": "model-00001-of-00003.safetensors",
61
- "transformer.h.10.attn.c_attn.bias": "model-00002-of-00003.safetensors",
62
- "transformer.h.10.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
63
- "transformer.h.10.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
64
- "transformer.h.10.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
65
- "transformer.h.10.attn.c_attn.scales": "model-00002-of-00003.safetensors",
66
- "transformer.h.10.attn.c_proj.bias": "model-00002-of-00003.safetensors",
67
- "transformer.h.10.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
68
- "transformer.h.10.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
69
- "transformer.h.10.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
70
- "transformer.h.10.attn.c_proj.scales": "model-00002-of-00003.safetensors",
71
- "transformer.h.10.ln_1.weight": "model-00002-of-00003.safetensors",
72
- "transformer.h.10.ln_2.weight": "model-00002-of-00003.safetensors",
73
- "transformer.h.10.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
74
- "transformer.h.10.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
75
- "transformer.h.10.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
76
- "transformer.h.10.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
77
- "transformer.h.10.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
78
- "transformer.h.10.mlp.w1.bias": "model-00002-of-00003.safetensors",
79
- "transformer.h.10.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
80
- "transformer.h.10.mlp.w1.qweight": "model-00002-of-00003.safetensors",
81
- "transformer.h.10.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
82
- "transformer.h.10.mlp.w1.scales": "model-00002-of-00003.safetensors",
83
- "transformer.h.10.mlp.w2.bias": "model-00002-of-00003.safetensors",
84
- "transformer.h.10.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
85
- "transformer.h.10.mlp.w2.qweight": "model-00002-of-00003.safetensors",
86
- "transformer.h.10.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
87
- "transformer.h.10.mlp.w2.scales": "model-00002-of-00003.safetensors",
88
- "transformer.h.11.attn.c_attn.bias": "model-00002-of-00003.safetensors",
89
- "transformer.h.11.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
90
- "transformer.h.11.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
91
- "transformer.h.11.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
92
- "transformer.h.11.attn.c_attn.scales": "model-00002-of-00003.safetensors",
93
- "transformer.h.11.attn.c_proj.bias": "model-00002-of-00003.safetensors",
94
- "transformer.h.11.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
95
- "transformer.h.11.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
96
- "transformer.h.11.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
97
- "transformer.h.11.attn.c_proj.scales": "model-00002-of-00003.safetensors",
98
- "transformer.h.11.ln_1.weight": "model-00002-of-00003.safetensors",
99
- "transformer.h.11.ln_2.weight": "model-00002-of-00003.safetensors",
100
- "transformer.h.11.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
101
- "transformer.h.11.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
102
- "transformer.h.11.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
103
- "transformer.h.11.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
104
- "transformer.h.11.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
105
- "transformer.h.11.mlp.w1.bias": "model-00002-of-00003.safetensors",
106
- "transformer.h.11.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
107
- "transformer.h.11.mlp.w1.qweight": "model-00002-of-00003.safetensors",
108
- "transformer.h.11.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
109
- "transformer.h.11.mlp.w1.scales": "model-00002-of-00003.safetensors",
110
- "transformer.h.11.mlp.w2.bias": "model-00002-of-00003.safetensors",
111
- "transformer.h.11.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
112
- "transformer.h.11.mlp.w2.qweight": "model-00002-of-00003.safetensors",
113
- "transformer.h.11.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
114
- "transformer.h.11.mlp.w2.scales": "model-00002-of-00003.safetensors",
115
- "transformer.h.12.attn.c_attn.bias": "model-00002-of-00003.safetensors",
116
- "transformer.h.12.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
117
- "transformer.h.12.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
118
- "transformer.h.12.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
119
- "transformer.h.12.attn.c_attn.scales": "model-00002-of-00003.safetensors",
120
- "transformer.h.12.attn.c_proj.bias": "model-00002-of-00003.safetensors",
121
- "transformer.h.12.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
122
- "transformer.h.12.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
123
- "transformer.h.12.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
124
- "transformer.h.12.attn.c_proj.scales": "model-00002-of-00003.safetensors",
125
- "transformer.h.12.ln_1.weight": "model-00002-of-00003.safetensors",
126
- "transformer.h.12.ln_2.weight": "model-00002-of-00003.safetensors",
127
- "transformer.h.12.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
128
- "transformer.h.12.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
129
- "transformer.h.12.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
130
- "transformer.h.12.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
131
- "transformer.h.12.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
132
- "transformer.h.12.mlp.w1.bias": "model-00002-of-00003.safetensors",
133
- "transformer.h.12.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
134
- "transformer.h.12.mlp.w1.qweight": "model-00002-of-00003.safetensors",
135
- "transformer.h.12.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
136
- "transformer.h.12.mlp.w1.scales": "model-00002-of-00003.safetensors",
137
- "transformer.h.12.mlp.w2.bias": "model-00002-of-00003.safetensors",
138
- "transformer.h.12.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
139
- "transformer.h.12.mlp.w2.qweight": "model-00002-of-00003.safetensors",
140
- "transformer.h.12.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
141
- "transformer.h.12.mlp.w2.scales": "model-00002-of-00003.safetensors",
142
- "transformer.h.13.attn.c_attn.bias": "model-00002-of-00003.safetensors",
143
- "transformer.h.13.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
144
- "transformer.h.13.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
145
- "transformer.h.13.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
146
- "transformer.h.13.attn.c_attn.scales": "model-00002-of-00003.safetensors",
147
- "transformer.h.13.attn.c_proj.bias": "model-00002-of-00003.safetensors",
148
- "transformer.h.13.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
149
- "transformer.h.13.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
150
- "transformer.h.13.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
151
- "transformer.h.13.attn.c_proj.scales": "model-00002-of-00003.safetensors",
152
- "transformer.h.13.ln_1.weight": "model-00002-of-00003.safetensors",
153
- "transformer.h.13.ln_2.weight": "model-00002-of-00003.safetensors",
154
- "transformer.h.13.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
155
- "transformer.h.13.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
156
- "transformer.h.13.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
157
- "transformer.h.13.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
158
- "transformer.h.13.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
159
- "transformer.h.13.mlp.w1.bias": "model-00002-of-00003.safetensors",
160
- "transformer.h.13.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
161
- "transformer.h.13.mlp.w1.qweight": "model-00002-of-00003.safetensors",
162
- "transformer.h.13.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
163
- "transformer.h.13.mlp.w1.scales": "model-00002-of-00003.safetensors",
164
- "transformer.h.13.mlp.w2.bias": "model-00002-of-00003.safetensors",
165
- "transformer.h.13.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
166
- "transformer.h.13.mlp.w2.qweight": "model-00002-of-00003.safetensors",
167
- "transformer.h.13.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
168
- "transformer.h.13.mlp.w2.scales": "model-00002-of-00003.safetensors",
169
- "transformer.h.14.attn.c_attn.bias": "model-00002-of-00003.safetensors",
170
- "transformer.h.14.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
171
- "transformer.h.14.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
172
- "transformer.h.14.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
173
- "transformer.h.14.attn.c_attn.scales": "model-00002-of-00003.safetensors",
174
- "transformer.h.14.attn.c_proj.bias": "model-00002-of-00003.safetensors",
175
- "transformer.h.14.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
176
- "transformer.h.14.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
177
- "transformer.h.14.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
178
- "transformer.h.14.attn.c_proj.scales": "model-00002-of-00003.safetensors",
179
- "transformer.h.14.ln_1.weight": "model-00002-of-00003.safetensors",
180
- "transformer.h.14.ln_2.weight": "model-00002-of-00003.safetensors",
181
- "transformer.h.14.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
182
- "transformer.h.14.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
183
- "transformer.h.14.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
184
- "transformer.h.14.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
185
- "transformer.h.14.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
186
- "transformer.h.14.mlp.w1.bias": "model-00002-of-00003.safetensors",
187
- "transformer.h.14.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
188
- "transformer.h.14.mlp.w1.qweight": "model-00002-of-00003.safetensors",
189
- "transformer.h.14.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
190
- "transformer.h.14.mlp.w1.scales": "model-00002-of-00003.safetensors",
191
- "transformer.h.14.mlp.w2.bias": "model-00002-of-00003.safetensors",
192
- "transformer.h.14.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
193
- "transformer.h.14.mlp.w2.qweight": "model-00002-of-00003.safetensors",
194
- "transformer.h.14.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
195
- "transformer.h.14.mlp.w2.scales": "model-00002-of-00003.safetensors",
196
- "transformer.h.15.attn.c_attn.bias": "model-00002-of-00003.safetensors",
197
- "transformer.h.15.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
198
- "transformer.h.15.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
199
- "transformer.h.15.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
200
- "transformer.h.15.attn.c_attn.scales": "model-00002-of-00003.safetensors",
201
- "transformer.h.15.attn.c_proj.bias": "model-00002-of-00003.safetensors",
202
- "transformer.h.15.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
203
- "transformer.h.15.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
204
- "transformer.h.15.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
205
- "transformer.h.15.attn.c_proj.scales": "model-00002-of-00003.safetensors",
206
- "transformer.h.15.ln_1.weight": "model-00002-of-00003.safetensors",
207
- "transformer.h.15.ln_2.weight": "model-00002-of-00003.safetensors",
208
- "transformer.h.15.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
209
- "transformer.h.15.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
210
- "transformer.h.15.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
211
- "transformer.h.15.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
212
- "transformer.h.15.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
213
- "transformer.h.15.mlp.w1.bias": "model-00002-of-00003.safetensors",
214
- "transformer.h.15.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
215
- "transformer.h.15.mlp.w1.qweight": "model-00002-of-00003.safetensors",
216
- "transformer.h.15.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
217
- "transformer.h.15.mlp.w1.scales": "model-00002-of-00003.safetensors",
218
- "transformer.h.15.mlp.w2.bias": "model-00002-of-00003.safetensors",
219
- "transformer.h.15.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
220
- "transformer.h.15.mlp.w2.qweight": "model-00002-of-00003.safetensors",
221
- "transformer.h.15.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
222
- "transformer.h.15.mlp.w2.scales": "model-00002-of-00003.safetensors",
223
- "transformer.h.16.attn.c_attn.bias": "model-00002-of-00003.safetensors",
224
- "transformer.h.16.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
225
- "transformer.h.16.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
226
- "transformer.h.16.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
227
- "transformer.h.16.attn.c_attn.scales": "model-00002-of-00003.safetensors",
228
- "transformer.h.16.attn.c_proj.bias": "model-00002-of-00003.safetensors",
229
- "transformer.h.16.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
230
- "transformer.h.16.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
231
- "transformer.h.16.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
232
- "transformer.h.16.attn.c_proj.scales": "model-00002-of-00003.safetensors",
233
- "transformer.h.16.ln_1.weight": "model-00002-of-00003.safetensors",
234
- "transformer.h.16.ln_2.weight": "model-00002-of-00003.safetensors",
235
- "transformer.h.16.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
236
- "transformer.h.16.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
237
- "transformer.h.16.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
238
- "transformer.h.16.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
239
- "transformer.h.16.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
240
- "transformer.h.16.mlp.w1.bias": "model-00002-of-00003.safetensors",
241
- "transformer.h.16.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
242
- "transformer.h.16.mlp.w1.qweight": "model-00002-of-00003.safetensors",
243
- "transformer.h.16.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
244
- "transformer.h.16.mlp.w1.scales": "model-00002-of-00003.safetensors",
245
- "transformer.h.16.mlp.w2.bias": "model-00002-of-00003.safetensors",
246
- "transformer.h.16.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
247
- "transformer.h.16.mlp.w2.qweight": "model-00002-of-00003.safetensors",
248
- "transformer.h.16.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
249
- "transformer.h.16.mlp.w2.scales": "model-00002-of-00003.safetensors",
250
- "transformer.h.17.attn.c_attn.bias": "model-00002-of-00003.safetensors",
251
- "transformer.h.17.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
252
- "transformer.h.17.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
253
- "transformer.h.17.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
254
- "transformer.h.17.attn.c_attn.scales": "model-00002-of-00003.safetensors",
255
- "transformer.h.17.attn.c_proj.bias": "model-00002-of-00003.safetensors",
256
- "transformer.h.17.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
257
- "transformer.h.17.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
258
- "transformer.h.17.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
259
- "transformer.h.17.attn.c_proj.scales": "model-00002-of-00003.safetensors",
260
- "transformer.h.17.ln_1.weight": "model-00002-of-00003.safetensors",
261
- "transformer.h.17.ln_2.weight": "model-00002-of-00003.safetensors",
262
- "transformer.h.17.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
263
- "transformer.h.17.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
264
- "transformer.h.17.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
265
- "transformer.h.17.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
266
- "transformer.h.17.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
267
- "transformer.h.17.mlp.w1.bias": "model-00002-of-00003.safetensors",
268
- "transformer.h.17.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
269
- "transformer.h.17.mlp.w1.qweight": "model-00002-of-00003.safetensors",
270
- "transformer.h.17.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
271
- "transformer.h.17.mlp.w1.scales": "model-00002-of-00003.safetensors",
272
- "transformer.h.17.mlp.w2.bias": "model-00002-of-00003.safetensors",
273
- "transformer.h.17.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
274
- "transformer.h.17.mlp.w2.qweight": "model-00002-of-00003.safetensors",
275
- "transformer.h.17.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
276
- "transformer.h.17.mlp.w2.scales": "model-00002-of-00003.safetensors",
277
- "transformer.h.18.attn.c_attn.bias": "model-00002-of-00003.safetensors",
278
- "transformer.h.18.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
279
- "transformer.h.18.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
280
- "transformer.h.18.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
281
- "transformer.h.18.attn.c_attn.scales": "model-00002-of-00003.safetensors",
282
- "transformer.h.18.attn.c_proj.bias": "model-00002-of-00003.safetensors",
283
- "transformer.h.18.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
284
- "transformer.h.18.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
285
- "transformer.h.18.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
286
- "transformer.h.18.attn.c_proj.scales": "model-00002-of-00003.safetensors",
287
- "transformer.h.18.ln_1.weight": "model-00002-of-00003.safetensors",
288
- "transformer.h.18.ln_2.weight": "model-00002-of-00003.safetensors",
289
- "transformer.h.18.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
290
- "transformer.h.18.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
291
- "transformer.h.18.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
292
- "transformer.h.18.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
293
- "transformer.h.18.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
294
- "transformer.h.18.mlp.w1.bias": "model-00002-of-00003.safetensors",
295
- "transformer.h.18.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
296
- "transformer.h.18.mlp.w1.qweight": "model-00002-of-00003.safetensors",
297
- "transformer.h.18.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
298
- "transformer.h.18.mlp.w1.scales": "model-00002-of-00003.safetensors",
299
- "transformer.h.18.mlp.w2.bias": "model-00002-of-00003.safetensors",
300
- "transformer.h.18.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
301
- "transformer.h.18.mlp.w2.qweight": "model-00002-of-00003.safetensors",
302
- "transformer.h.18.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
303
- "transformer.h.18.mlp.w2.scales": "model-00002-of-00003.safetensors",
304
- "transformer.h.19.attn.c_attn.bias": "model-00002-of-00003.safetensors",
305
- "transformer.h.19.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
306
- "transformer.h.19.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
307
- "transformer.h.19.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
308
- "transformer.h.19.attn.c_attn.scales": "model-00002-of-00003.safetensors",
309
- "transformer.h.19.attn.c_proj.bias": "model-00002-of-00003.safetensors",
310
- "transformer.h.19.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
311
- "transformer.h.19.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
312
- "transformer.h.19.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
313
- "transformer.h.19.attn.c_proj.scales": "model-00002-of-00003.safetensors",
314
- "transformer.h.19.ln_1.weight": "model-00002-of-00003.safetensors",
315
- "transformer.h.19.ln_2.weight": "model-00002-of-00003.safetensors",
316
- "transformer.h.19.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
317
- "transformer.h.19.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
318
- "transformer.h.19.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
319
- "transformer.h.19.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
320
- "transformer.h.19.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
321
- "transformer.h.19.mlp.w1.bias": "model-00002-of-00003.safetensors",
322
- "transformer.h.19.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
323
- "transformer.h.19.mlp.w1.qweight": "model-00002-of-00003.safetensors",
324
- "transformer.h.19.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
325
- "transformer.h.19.mlp.w1.scales": "model-00002-of-00003.safetensors",
326
- "transformer.h.19.mlp.w2.bias": "model-00002-of-00003.safetensors",
327
- "transformer.h.19.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
328
- "transformer.h.19.mlp.w2.qweight": "model-00002-of-00003.safetensors",
329
- "transformer.h.19.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
330
- "transformer.h.19.mlp.w2.scales": "model-00002-of-00003.safetensors",
331
- "transformer.h.2.attn.c_attn.bias": "model-00001-of-00003.safetensors",
332
- "transformer.h.2.attn.c_attn.g_idx": "model-00001-of-00003.safetensors",
333
- "transformer.h.2.attn.c_attn.qweight": "model-00001-of-00003.safetensors",
334
- "transformer.h.2.attn.c_attn.qzeros": "model-00001-of-00003.safetensors",
335
- "transformer.h.2.attn.c_attn.scales": "model-00001-of-00003.safetensors",
336
- "transformer.h.2.attn.c_proj.bias": "model-00001-of-00003.safetensors",
337
- "transformer.h.2.attn.c_proj.g_idx": "model-00001-of-00003.safetensors",
338
- "transformer.h.2.attn.c_proj.qweight": "model-00001-of-00003.safetensors",
339
- "transformer.h.2.attn.c_proj.qzeros": "model-00001-of-00003.safetensors",
340
- "transformer.h.2.attn.c_proj.scales": "model-00001-of-00003.safetensors",
341
- "transformer.h.2.ln_1.weight": "model-00001-of-00003.safetensors",
342
- "transformer.h.2.ln_2.weight": "model-00001-of-00003.safetensors",
343
- "transformer.h.2.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
344
- "transformer.h.2.mlp.c_proj.g_idx": "model-00001-of-00003.safetensors",
345
- "transformer.h.2.mlp.c_proj.qweight": "model-00001-of-00003.safetensors",
346
- "transformer.h.2.mlp.c_proj.qzeros": "model-00001-of-00003.safetensors",
347
- "transformer.h.2.mlp.c_proj.scales": "model-00001-of-00003.safetensors",
348
- "transformer.h.2.mlp.w1.bias": "model-00001-of-00003.safetensors",
349
- "transformer.h.2.mlp.w1.g_idx": "model-00001-of-00003.safetensors",
350
- "transformer.h.2.mlp.w1.qweight": "model-00001-of-00003.safetensors",
351
- "transformer.h.2.mlp.w1.qzeros": "model-00001-of-00003.safetensors",
352
- "transformer.h.2.mlp.w1.scales": "model-00001-of-00003.safetensors",
353
- "transformer.h.2.mlp.w2.bias": "model-00001-of-00003.safetensors",
354
- "transformer.h.2.mlp.w2.g_idx": "model-00001-of-00003.safetensors",
355
- "transformer.h.2.mlp.w2.qweight": "model-00001-of-00003.safetensors",
356
- "transformer.h.2.mlp.w2.qzeros": "model-00001-of-00003.safetensors",
357
- "transformer.h.2.mlp.w2.scales": "model-00001-of-00003.safetensors",
358
- "transformer.h.20.attn.c_attn.bias": "model-00002-of-00003.safetensors",
359
- "transformer.h.20.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
360
- "transformer.h.20.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
361
- "transformer.h.20.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
362
- "transformer.h.20.attn.c_attn.scales": "model-00002-of-00003.safetensors",
363
- "transformer.h.20.attn.c_proj.bias": "model-00002-of-00003.safetensors",
364
- "transformer.h.20.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
365
- "transformer.h.20.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
366
- "transformer.h.20.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
367
- "transformer.h.20.attn.c_proj.scales": "model-00002-of-00003.safetensors",
368
- "transformer.h.20.ln_1.weight": "model-00002-of-00003.safetensors",
369
- "transformer.h.20.ln_2.weight": "model-00002-of-00003.safetensors",
370
- "transformer.h.20.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
371
- "transformer.h.20.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
372
- "transformer.h.20.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
373
- "transformer.h.20.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
374
- "transformer.h.20.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
375
- "transformer.h.20.mlp.w1.bias": "model-00002-of-00003.safetensors",
376
- "transformer.h.20.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
377
- "transformer.h.20.mlp.w1.qweight": "model-00002-of-00003.safetensors",
378
- "transformer.h.20.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
379
- "transformer.h.20.mlp.w1.scales": "model-00002-of-00003.safetensors",
380
- "transformer.h.20.mlp.w2.bias": "model-00002-of-00003.safetensors",
381
- "transformer.h.20.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
382
- "transformer.h.20.mlp.w2.qweight": "model-00002-of-00003.safetensors",
383
- "transformer.h.20.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
384
- "transformer.h.20.mlp.w2.scales": "model-00002-of-00003.safetensors",
385
- "transformer.h.21.attn.c_attn.bias": "model-00002-of-00003.safetensors",
386
- "transformer.h.21.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
387
- "transformer.h.21.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
388
- "transformer.h.21.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
389
- "transformer.h.21.attn.c_attn.scales": "model-00002-of-00003.safetensors",
390
- "transformer.h.21.attn.c_proj.bias": "model-00002-of-00003.safetensors",
391
- "transformer.h.21.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
392
- "transformer.h.21.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
393
- "transformer.h.21.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
394
- "transformer.h.21.attn.c_proj.scales": "model-00002-of-00003.safetensors",
395
- "transformer.h.21.ln_1.weight": "model-00002-of-00003.safetensors",
396
- "transformer.h.21.ln_2.weight": "model-00002-of-00003.safetensors",
397
- "transformer.h.21.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
398
- "transformer.h.21.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
399
- "transformer.h.21.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
400
- "transformer.h.21.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
401
- "transformer.h.21.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
402
- "transformer.h.21.mlp.w1.bias": "model-00002-of-00003.safetensors",
403
- "transformer.h.21.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
404
- "transformer.h.21.mlp.w1.qweight": "model-00002-of-00003.safetensors",
405
- "transformer.h.21.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
406
- "transformer.h.21.mlp.w1.scales": "model-00002-of-00003.safetensors",
407
- "transformer.h.21.mlp.w2.bias": "model-00002-of-00003.safetensors",
408
- "transformer.h.21.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
409
- "transformer.h.21.mlp.w2.qweight": "model-00002-of-00003.safetensors",
410
- "transformer.h.21.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
411
- "transformer.h.21.mlp.w2.scales": "model-00002-of-00003.safetensors",
412
- "transformer.h.22.attn.c_attn.bias": "model-00002-of-00003.safetensors",
413
- "transformer.h.22.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
414
- "transformer.h.22.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
415
- "transformer.h.22.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
416
- "transformer.h.22.attn.c_attn.scales": "model-00002-of-00003.safetensors",
417
- "transformer.h.22.attn.c_proj.bias": "model-00002-of-00003.safetensors",
418
- "transformer.h.22.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
419
- "transformer.h.22.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
420
- "transformer.h.22.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
421
- "transformer.h.22.attn.c_proj.scales": "model-00002-of-00003.safetensors",
422
- "transformer.h.22.ln_1.weight": "model-00002-of-00003.safetensors",
423
- "transformer.h.22.ln_2.weight": "model-00002-of-00003.safetensors",
424
- "transformer.h.22.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
425
- "transformer.h.22.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
426
- "transformer.h.22.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
427
- "transformer.h.22.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
428
- "transformer.h.22.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
429
- "transformer.h.22.mlp.w1.bias": "model-00002-of-00003.safetensors",
430
- "transformer.h.22.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
431
- "transformer.h.22.mlp.w1.qweight": "model-00002-of-00003.safetensors",
432
- "transformer.h.22.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
433
- "transformer.h.22.mlp.w1.scales": "model-00002-of-00003.safetensors",
434
- "transformer.h.22.mlp.w2.bias": "model-00002-of-00003.safetensors",
435
- "transformer.h.22.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
436
- "transformer.h.22.mlp.w2.qweight": "model-00002-of-00003.safetensors",
437
- "transformer.h.22.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
438
- "transformer.h.22.mlp.w2.scales": "model-00002-of-00003.safetensors",
439
- "transformer.h.23.attn.c_attn.bias": "model-00002-of-00003.safetensors",
440
- "transformer.h.23.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
441
- "transformer.h.23.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
442
- "transformer.h.23.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
443
- "transformer.h.23.attn.c_attn.scales": "model-00002-of-00003.safetensors",
444
- "transformer.h.23.attn.c_proj.bias": "model-00002-of-00003.safetensors",
445
- "transformer.h.23.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
446
- "transformer.h.23.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
447
- "transformer.h.23.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
448
- "transformer.h.23.attn.c_proj.scales": "model-00002-of-00003.safetensors",
449
- "transformer.h.23.ln_1.weight": "model-00002-of-00003.safetensors",
450
- "transformer.h.23.ln_2.weight": "model-00002-of-00003.safetensors",
451
- "transformer.h.23.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
452
- "transformer.h.23.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
453
- "transformer.h.23.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
454
- "transformer.h.23.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
455
- "transformer.h.23.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
456
- "transformer.h.23.mlp.w1.bias": "model-00002-of-00003.safetensors",
457
- "transformer.h.23.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
458
- "transformer.h.23.mlp.w1.qweight": "model-00002-of-00003.safetensors",
459
- "transformer.h.23.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
460
- "transformer.h.23.mlp.w1.scales": "model-00002-of-00003.safetensors",
461
- "transformer.h.23.mlp.w2.bias": "model-00002-of-00003.safetensors",
462
- "transformer.h.23.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
463
- "transformer.h.23.mlp.w2.qweight": "model-00002-of-00003.safetensors",
464
- "transformer.h.23.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
465
- "transformer.h.23.mlp.w2.scales": "model-00002-of-00003.safetensors",
466
- "transformer.h.24.attn.c_attn.bias": "model-00002-of-00003.safetensors",
467
- "transformer.h.24.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
468
- "transformer.h.24.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
469
- "transformer.h.24.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
470
- "transformer.h.24.attn.c_attn.scales": "model-00002-of-00003.safetensors",
471
- "transformer.h.24.attn.c_proj.bias": "model-00002-of-00003.safetensors",
472
- "transformer.h.24.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
473
- "transformer.h.24.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
474
- "transformer.h.24.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
475
- "transformer.h.24.attn.c_proj.scales": "model-00002-of-00003.safetensors",
476
- "transformer.h.24.ln_1.weight": "model-00002-of-00003.safetensors",
477
- "transformer.h.24.ln_2.weight": "model-00002-of-00003.safetensors",
478
- "transformer.h.24.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
479
- "transformer.h.24.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
480
- "transformer.h.24.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
481
- "transformer.h.24.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
482
- "transformer.h.24.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
483
- "transformer.h.24.mlp.w1.bias": "model-00002-of-00003.safetensors",
484
- "transformer.h.24.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
485
- "transformer.h.24.mlp.w1.qweight": "model-00002-of-00003.safetensors",
486
- "transformer.h.24.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
487
- "transformer.h.24.mlp.w1.scales": "model-00002-of-00003.safetensors",
488
- "transformer.h.24.mlp.w2.bias": "model-00002-of-00003.safetensors",
489
- "transformer.h.24.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
490
- "transformer.h.24.mlp.w2.qweight": "model-00002-of-00003.safetensors",
491
- "transformer.h.24.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
492
- "transformer.h.24.mlp.w2.scales": "model-00002-of-00003.safetensors",
493
- "transformer.h.25.attn.c_attn.bias": "model-00002-of-00003.safetensors",
494
- "transformer.h.25.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
495
- "transformer.h.25.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
496
- "transformer.h.25.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
497
- "transformer.h.25.attn.c_attn.scales": "model-00002-of-00003.safetensors",
498
- "transformer.h.25.attn.c_proj.bias": "model-00002-of-00003.safetensors",
499
- "transformer.h.25.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
500
- "transformer.h.25.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
501
- "transformer.h.25.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
502
- "transformer.h.25.attn.c_proj.scales": "model-00002-of-00003.safetensors",
503
- "transformer.h.25.ln_1.weight": "model-00002-of-00003.safetensors",
504
- "transformer.h.25.ln_2.weight": "model-00002-of-00003.safetensors",
505
- "transformer.h.25.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
506
- "transformer.h.25.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
507
- "transformer.h.25.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
508
- "transformer.h.25.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
509
- "transformer.h.25.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
510
- "transformer.h.25.mlp.w1.bias": "model-00002-of-00003.safetensors",
511
- "transformer.h.25.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
512
- "transformer.h.25.mlp.w1.qweight": "model-00002-of-00003.safetensors",
513
- "transformer.h.25.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
514
- "transformer.h.25.mlp.w1.scales": "model-00002-of-00003.safetensors",
515
- "transformer.h.25.mlp.w2.bias": "model-00002-of-00003.safetensors",
516
- "transformer.h.25.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
517
- "transformer.h.25.mlp.w2.qweight": "model-00002-of-00003.safetensors",
518
- "transformer.h.25.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
519
- "transformer.h.25.mlp.w2.scales": "model-00002-of-00003.safetensors",
520
- "transformer.h.26.attn.c_attn.bias": "model-00002-of-00003.safetensors",
521
- "transformer.h.26.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
522
- "transformer.h.26.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
523
- "transformer.h.26.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
524
- "transformer.h.26.attn.c_attn.scales": "model-00002-of-00003.safetensors",
525
- "transformer.h.26.attn.c_proj.bias": "model-00002-of-00003.safetensors",
526
- "transformer.h.26.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
527
- "transformer.h.26.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
528
- "transformer.h.26.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
529
- "transformer.h.26.attn.c_proj.scales": "model-00002-of-00003.safetensors",
530
- "transformer.h.26.ln_1.weight": "model-00002-of-00003.safetensors",
531
- "transformer.h.26.ln_2.weight": "model-00002-of-00003.safetensors",
532
- "transformer.h.26.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
533
- "transformer.h.26.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
534
- "transformer.h.26.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
535
- "transformer.h.26.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
536
- "transformer.h.26.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
537
- "transformer.h.26.mlp.w1.bias": "model-00002-of-00003.safetensors",
538
- "transformer.h.26.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
539
- "transformer.h.26.mlp.w1.qweight": "model-00002-of-00003.safetensors",
540
- "transformer.h.26.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
541
- "transformer.h.26.mlp.w1.scales": "model-00002-of-00003.safetensors",
542
- "transformer.h.26.mlp.w2.bias": "model-00003-of-00003.safetensors",
543
- "transformer.h.26.mlp.w2.g_idx": "model-00003-of-00003.safetensors",
544
- "transformer.h.26.mlp.w2.qweight": "model-00002-of-00003.safetensors",
545
- "transformer.h.26.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
546
- "transformer.h.26.mlp.w2.scales": "model-00003-of-00003.safetensors",
547
- "transformer.h.27.attn.c_attn.bias": "model-00003-of-00003.safetensors",
548
- "transformer.h.27.attn.c_attn.g_idx": "model-00003-of-00003.safetensors",
549
- "transformer.h.27.attn.c_attn.qweight": "model-00003-of-00003.safetensors",
550
- "transformer.h.27.attn.c_attn.qzeros": "model-00003-of-00003.safetensors",
551
- "transformer.h.27.attn.c_attn.scales": "model-00003-of-00003.safetensors",
552
- "transformer.h.27.attn.c_proj.bias": "model-00003-of-00003.safetensors",
553
- "transformer.h.27.attn.c_proj.g_idx": "model-00003-of-00003.safetensors",
554
- "transformer.h.27.attn.c_proj.qweight": "model-00003-of-00003.safetensors",
555
- "transformer.h.27.attn.c_proj.qzeros": "model-00003-of-00003.safetensors",
556
- "transformer.h.27.attn.c_proj.scales": "model-00003-of-00003.safetensors",
557
- "transformer.h.27.ln_1.weight": "model-00003-of-00003.safetensors",
558
- "transformer.h.27.ln_2.weight": "model-00003-of-00003.safetensors",
559
- "transformer.h.27.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
560
- "transformer.h.27.mlp.c_proj.g_idx": "model-00003-of-00003.safetensors",
561
- "transformer.h.27.mlp.c_proj.qweight": "model-00003-of-00003.safetensors",
562
- "transformer.h.27.mlp.c_proj.qzeros": "model-00003-of-00003.safetensors",
563
- "transformer.h.27.mlp.c_proj.scales": "model-00003-of-00003.safetensors",
564
- "transformer.h.27.mlp.w1.bias": "model-00003-of-00003.safetensors",
565
- "transformer.h.27.mlp.w1.g_idx": "model-00003-of-00003.safetensors",
566
- "transformer.h.27.mlp.w1.qweight": "model-00003-of-00003.safetensors",
567
- "transformer.h.27.mlp.w1.qzeros": "model-00003-of-00003.safetensors",
568
- "transformer.h.27.mlp.w1.scales": "model-00003-of-00003.safetensors",
569
- "transformer.h.27.mlp.w2.bias": "model-00003-of-00003.safetensors",
570
- "transformer.h.27.mlp.w2.g_idx": "model-00003-of-00003.safetensors",
571
- "transformer.h.27.mlp.w2.qweight": "model-00003-of-00003.safetensors",
572
- "transformer.h.27.mlp.w2.qzeros": "model-00003-of-00003.safetensors",
573
- "transformer.h.27.mlp.w2.scales": "model-00003-of-00003.safetensors",
574
- "transformer.h.28.attn.c_attn.bias": "model-00003-of-00003.safetensors",
575
- "transformer.h.28.attn.c_attn.g_idx": "model-00003-of-00003.safetensors",
576
- "transformer.h.28.attn.c_attn.qweight": "model-00003-of-00003.safetensors",
577
- "transformer.h.28.attn.c_attn.qzeros": "model-00003-of-00003.safetensors",
578
- "transformer.h.28.attn.c_attn.scales": "model-00003-of-00003.safetensors",
579
- "transformer.h.28.attn.c_proj.bias": "model-00003-of-00003.safetensors",
580
- "transformer.h.28.attn.c_proj.g_idx": "model-00003-of-00003.safetensors",
581
- "transformer.h.28.attn.c_proj.qweight": "model-00003-of-00003.safetensors",
582
- "transformer.h.28.attn.c_proj.qzeros": "model-00003-of-00003.safetensors",
583
- "transformer.h.28.attn.c_proj.scales": "model-00003-of-00003.safetensors",
584
- "transformer.h.28.ln_1.weight": "model-00003-of-00003.safetensors",
585
- "transformer.h.28.ln_2.weight": "model-00003-of-00003.safetensors",
586
- "transformer.h.28.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
587
- "transformer.h.28.mlp.c_proj.g_idx": "model-00003-of-00003.safetensors",
588
- "transformer.h.28.mlp.c_proj.qweight": "model-00003-of-00003.safetensors",
589
- "transformer.h.28.mlp.c_proj.qzeros": "model-00003-of-00003.safetensors",
590
- "transformer.h.28.mlp.c_proj.scales": "model-00003-of-00003.safetensors",
591
- "transformer.h.28.mlp.w1.bias": "model-00003-of-00003.safetensors",
592
- "transformer.h.28.mlp.w1.g_idx": "model-00003-of-00003.safetensors",
593
- "transformer.h.28.mlp.w1.qweight": "model-00003-of-00003.safetensors",
594
- "transformer.h.28.mlp.w1.qzeros": "model-00003-of-00003.safetensors",
595
- "transformer.h.28.mlp.w1.scales": "model-00003-of-00003.safetensors",
596
- "transformer.h.28.mlp.w2.bias": "model-00003-of-00003.safetensors",
597
- "transformer.h.28.mlp.w2.g_idx": "model-00003-of-00003.safetensors",
598
- "transformer.h.28.mlp.w2.qweight": "model-00003-of-00003.safetensors",
599
- "transformer.h.28.mlp.w2.qzeros": "model-00003-of-00003.safetensors",
600
- "transformer.h.28.mlp.w2.scales": "model-00003-of-00003.safetensors",
601
- "transformer.h.29.attn.c_attn.bias": "model-00003-of-00003.safetensors",
602
- "transformer.h.29.attn.c_attn.g_idx": "model-00003-of-00003.safetensors",
603
- "transformer.h.29.attn.c_attn.qweight": "model-00003-of-00003.safetensors",
604
- "transformer.h.29.attn.c_attn.qzeros": "model-00003-of-00003.safetensors",
605
- "transformer.h.29.attn.c_attn.scales": "model-00003-of-00003.safetensors",
606
- "transformer.h.29.attn.c_proj.bias": "model-00003-of-00003.safetensors",
607
- "transformer.h.29.attn.c_proj.g_idx": "model-00003-of-00003.safetensors",
608
- "transformer.h.29.attn.c_proj.qweight": "model-00003-of-00003.safetensors",
609
- "transformer.h.29.attn.c_proj.qzeros": "model-00003-of-00003.safetensors",
610
- "transformer.h.29.attn.c_proj.scales": "model-00003-of-00003.safetensors",
611
- "transformer.h.29.ln_1.weight": "model-00003-of-00003.safetensors",
612
- "transformer.h.29.ln_2.weight": "model-00003-of-00003.safetensors",
613
- "transformer.h.29.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
614
- "transformer.h.29.mlp.c_proj.g_idx": "model-00003-of-00003.safetensors",
615
- "transformer.h.29.mlp.c_proj.qweight": "model-00003-of-00003.safetensors",
616
- "transformer.h.29.mlp.c_proj.qzeros": "model-00003-of-00003.safetensors",
617
- "transformer.h.29.mlp.c_proj.scales": "model-00003-of-00003.safetensors",
618
- "transformer.h.29.mlp.w1.bias": "model-00003-of-00003.safetensors",
619
- "transformer.h.29.mlp.w1.g_idx": "model-00003-of-00003.safetensors",
620
- "transformer.h.29.mlp.w1.qweight": "model-00003-of-00003.safetensors",
621
- "transformer.h.29.mlp.w1.qzeros": "model-00003-of-00003.safetensors",
622
- "transformer.h.29.mlp.w1.scales": "model-00003-of-00003.safetensors",
623
- "transformer.h.29.mlp.w2.bias": "model-00003-of-00003.safetensors",
624
- "transformer.h.29.mlp.w2.g_idx": "model-00003-of-00003.safetensors",
625
- "transformer.h.29.mlp.w2.qweight": "model-00003-of-00003.safetensors",
626
- "transformer.h.29.mlp.w2.qzeros": "model-00003-of-00003.safetensors",
627
- "transformer.h.29.mlp.w2.scales": "model-00003-of-00003.safetensors",
628
- "transformer.h.3.attn.c_attn.bias": "model-00001-of-00003.safetensors",
629
- "transformer.h.3.attn.c_attn.g_idx": "model-00001-of-00003.safetensors",
630
- "transformer.h.3.attn.c_attn.qweight": "model-00001-of-00003.safetensors",
631
- "transformer.h.3.attn.c_attn.qzeros": "model-00001-of-00003.safetensors",
632
- "transformer.h.3.attn.c_attn.scales": "model-00001-of-00003.safetensors",
633
- "transformer.h.3.attn.c_proj.bias": "model-00001-of-00003.safetensors",
634
- "transformer.h.3.attn.c_proj.g_idx": "model-00001-of-00003.safetensors",
635
- "transformer.h.3.attn.c_proj.qweight": "model-00001-of-00003.safetensors",
636
- "transformer.h.3.attn.c_proj.qzeros": "model-00001-of-00003.safetensors",
637
- "transformer.h.3.attn.c_proj.scales": "model-00001-of-00003.safetensors",
638
- "transformer.h.3.ln_1.weight": "model-00001-of-00003.safetensors",
639
- "transformer.h.3.ln_2.weight": "model-00001-of-00003.safetensors",
640
- "transformer.h.3.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
641
- "transformer.h.3.mlp.c_proj.g_idx": "model-00001-of-00003.safetensors",
642
- "transformer.h.3.mlp.c_proj.qweight": "model-00001-of-00003.safetensors",
643
- "transformer.h.3.mlp.c_proj.qzeros": "model-00001-of-00003.safetensors",
644
- "transformer.h.3.mlp.c_proj.scales": "model-00001-of-00003.safetensors",
645
- "transformer.h.3.mlp.w1.bias": "model-00001-of-00003.safetensors",
646
- "transformer.h.3.mlp.w1.g_idx": "model-00001-of-00003.safetensors",
647
- "transformer.h.3.mlp.w1.qweight": "model-00001-of-00003.safetensors",
648
- "transformer.h.3.mlp.w1.qzeros": "model-00001-of-00003.safetensors",
649
- "transformer.h.3.mlp.w1.scales": "model-00001-of-00003.safetensors",
650
- "transformer.h.3.mlp.w2.bias": "model-00001-of-00003.safetensors",
651
- "transformer.h.3.mlp.w2.g_idx": "model-00001-of-00003.safetensors",
652
- "transformer.h.3.mlp.w2.qweight": "model-00001-of-00003.safetensors",
653
- "transformer.h.3.mlp.w2.qzeros": "model-00001-of-00003.safetensors",
654
- "transformer.h.3.mlp.w2.scales": "model-00001-of-00003.safetensors",
655
- "transformer.h.30.attn.c_attn.bias": "model-00003-of-00003.safetensors",
656
- "transformer.h.30.attn.c_attn.g_idx": "model-00003-of-00003.safetensors",
657
- "transformer.h.30.attn.c_attn.qweight": "model-00003-of-00003.safetensors",
658
- "transformer.h.30.attn.c_attn.qzeros": "model-00003-of-00003.safetensors",
659
- "transformer.h.30.attn.c_attn.scales": "model-00003-of-00003.safetensors",
660
- "transformer.h.30.attn.c_proj.bias": "model-00003-of-00003.safetensors",
661
- "transformer.h.30.attn.c_proj.g_idx": "model-00003-of-00003.safetensors",
662
- "transformer.h.30.attn.c_proj.qweight": "model-00003-of-00003.safetensors",
663
- "transformer.h.30.attn.c_proj.qzeros": "model-00003-of-00003.safetensors",
664
- "transformer.h.30.attn.c_proj.scales": "model-00003-of-00003.safetensors",
665
- "transformer.h.30.ln_1.weight": "model-00003-of-00003.safetensors",
666
- "transformer.h.30.ln_2.weight": "model-00003-of-00003.safetensors",
667
- "transformer.h.30.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
668
- "transformer.h.30.mlp.c_proj.g_idx": "model-00003-of-00003.safetensors",
669
- "transformer.h.30.mlp.c_proj.qweight": "model-00003-of-00003.safetensors",
670
- "transformer.h.30.mlp.c_proj.qzeros": "model-00003-of-00003.safetensors",
671
- "transformer.h.30.mlp.c_proj.scales": "model-00003-of-00003.safetensors",
672
- "transformer.h.30.mlp.w1.bias": "model-00003-of-00003.safetensors",
673
- "transformer.h.30.mlp.w1.g_idx": "model-00003-of-00003.safetensors",
674
- "transformer.h.30.mlp.w1.qweight": "model-00003-of-00003.safetensors",
675
- "transformer.h.30.mlp.w1.qzeros": "model-00003-of-00003.safetensors",
676
- "transformer.h.30.mlp.w1.scales": "model-00003-of-00003.safetensors",
677
- "transformer.h.30.mlp.w2.bias": "model-00003-of-00003.safetensors",
678
- "transformer.h.30.mlp.w2.g_idx": "model-00003-of-00003.safetensors",
679
- "transformer.h.30.mlp.w2.qweight": "model-00003-of-00003.safetensors",
680
- "transformer.h.30.mlp.w2.qzeros": "model-00003-of-00003.safetensors",
681
- "transformer.h.30.mlp.w2.scales": "model-00003-of-00003.safetensors",
682
- "transformer.h.31.attn.c_attn.bias": "model-00003-of-00003.safetensors",
683
- "transformer.h.31.attn.c_attn.g_idx": "model-00003-of-00003.safetensors",
684
- "transformer.h.31.attn.c_attn.qweight": "model-00003-of-00003.safetensors",
685
- "transformer.h.31.attn.c_attn.qzeros": "model-00003-of-00003.safetensors",
686
- "transformer.h.31.attn.c_attn.scales": "model-00003-of-00003.safetensors",
687
- "transformer.h.31.attn.c_proj.bias": "model-00003-of-00003.safetensors",
688
- "transformer.h.31.attn.c_proj.g_idx": "model-00003-of-00003.safetensors",
689
- "transformer.h.31.attn.c_proj.qweight": "model-00003-of-00003.safetensors",
690
- "transformer.h.31.attn.c_proj.qzeros": "model-00003-of-00003.safetensors",
691
- "transformer.h.31.attn.c_proj.scales": "model-00003-of-00003.safetensors",
692
- "transformer.h.31.ln_1.weight": "model-00003-of-00003.safetensors",
693
- "transformer.h.31.ln_2.weight": "model-00003-of-00003.safetensors",
694
- "transformer.h.31.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
695
- "transformer.h.31.mlp.c_proj.g_idx": "model-00003-of-00003.safetensors",
696
- "transformer.h.31.mlp.c_proj.qweight": "model-00003-of-00003.safetensors",
697
- "transformer.h.31.mlp.c_proj.qzeros": "model-00003-of-00003.safetensors",
698
- "transformer.h.31.mlp.c_proj.scales": "model-00003-of-00003.safetensors",
699
- "transformer.h.31.mlp.w1.bias": "model-00003-of-00003.safetensors",
700
- "transformer.h.31.mlp.w1.g_idx": "model-00003-of-00003.safetensors",
701
- "transformer.h.31.mlp.w1.qweight": "model-00003-of-00003.safetensors",
702
- "transformer.h.31.mlp.w1.qzeros": "model-00003-of-00003.safetensors",
703
- "transformer.h.31.mlp.w1.scales": "model-00003-of-00003.safetensors",
704
- "transformer.h.31.mlp.w2.bias": "model-00003-of-00003.safetensors",
705
- "transformer.h.31.mlp.w2.g_idx": "model-00003-of-00003.safetensors",
706
- "transformer.h.31.mlp.w2.qweight": "model-00003-of-00003.safetensors",
707
- "transformer.h.31.mlp.w2.qzeros": "model-00003-of-00003.safetensors",
708
- "transformer.h.31.mlp.w2.scales": "model-00003-of-00003.safetensors",
709
- "transformer.h.4.attn.c_attn.bias": "model-00001-of-00003.safetensors",
710
- "transformer.h.4.attn.c_attn.g_idx": "model-00001-of-00003.safetensors",
711
- "transformer.h.4.attn.c_attn.qweight": "model-00001-of-00003.safetensors",
712
- "transformer.h.4.attn.c_attn.qzeros": "model-00001-of-00003.safetensors",
713
- "transformer.h.4.attn.c_attn.scales": "model-00001-of-00003.safetensors",
714
- "transformer.h.4.attn.c_proj.bias": "model-00001-of-00003.safetensors",
715
- "transformer.h.4.attn.c_proj.g_idx": "model-00001-of-00003.safetensors",
716
- "transformer.h.4.attn.c_proj.qweight": "model-00001-of-00003.safetensors",
717
- "transformer.h.4.attn.c_proj.qzeros": "model-00001-of-00003.safetensors",
718
- "transformer.h.4.attn.c_proj.scales": "model-00001-of-00003.safetensors",
719
- "transformer.h.4.ln_1.weight": "model-00001-of-00003.safetensors",
720
- "transformer.h.4.ln_2.weight": "model-00001-of-00003.safetensors",
721
- "transformer.h.4.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
722
- "transformer.h.4.mlp.c_proj.g_idx": "model-00001-of-00003.safetensors",
723
- "transformer.h.4.mlp.c_proj.qweight": "model-00001-of-00003.safetensors",
724
- "transformer.h.4.mlp.c_proj.qzeros": "model-00001-of-00003.safetensors",
725
- "transformer.h.4.mlp.c_proj.scales": "model-00001-of-00003.safetensors",
726
- "transformer.h.4.mlp.w1.bias": "model-00001-of-00003.safetensors",
727
- "transformer.h.4.mlp.w1.g_idx": "model-00001-of-00003.safetensors",
728
- "transformer.h.4.mlp.w1.qweight": "model-00001-of-00003.safetensors",
729
- "transformer.h.4.mlp.w1.qzeros": "model-00001-of-00003.safetensors",
730
- "transformer.h.4.mlp.w1.scales": "model-00001-of-00003.safetensors",
731
- "transformer.h.4.mlp.w2.bias": "model-00001-of-00003.safetensors",
732
- "transformer.h.4.mlp.w2.g_idx": "model-00001-of-00003.safetensors",
733
- "transformer.h.4.mlp.w2.qweight": "model-00001-of-00003.safetensors",
734
- "transformer.h.4.mlp.w2.qzeros": "model-00001-of-00003.safetensors",
735
- "transformer.h.4.mlp.w2.scales": "model-00001-of-00003.safetensors",
736
- "transformer.h.5.attn.c_attn.bias": "model-00001-of-00003.safetensors",
737
- "transformer.h.5.attn.c_attn.g_idx": "model-00001-of-00003.safetensors",
738
- "transformer.h.5.attn.c_attn.qweight": "model-00001-of-00003.safetensors",
739
- "transformer.h.5.attn.c_attn.qzeros": "model-00001-of-00003.safetensors",
740
- "transformer.h.5.attn.c_attn.scales": "model-00001-of-00003.safetensors",
741
- "transformer.h.5.attn.c_proj.bias": "model-00001-of-00003.safetensors",
742
- "transformer.h.5.attn.c_proj.g_idx": "model-00001-of-00003.safetensors",
743
- "transformer.h.5.attn.c_proj.qweight": "model-00001-of-00003.safetensors",
744
- "transformer.h.5.attn.c_proj.qzeros": "model-00001-of-00003.safetensors",
745
- "transformer.h.5.attn.c_proj.scales": "model-00001-of-00003.safetensors",
746
- "transformer.h.5.ln_1.weight": "model-00001-of-00003.safetensors",
747
- "transformer.h.5.ln_2.weight": "model-00001-of-00003.safetensors",
748
- "transformer.h.5.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
749
- "transformer.h.5.mlp.c_proj.g_idx": "model-00001-of-00003.safetensors",
750
- "transformer.h.5.mlp.c_proj.qweight": "model-00001-of-00003.safetensors",
751
- "transformer.h.5.mlp.c_proj.qzeros": "model-00001-of-00003.safetensors",
752
- "transformer.h.5.mlp.c_proj.scales": "model-00001-of-00003.safetensors",
753
- "transformer.h.5.mlp.w1.bias": "model-00001-of-00003.safetensors",
754
- "transformer.h.5.mlp.w1.g_idx": "model-00001-of-00003.safetensors",
755
- "transformer.h.5.mlp.w1.qweight": "model-00001-of-00003.safetensors",
756
- "transformer.h.5.mlp.w1.qzeros": "model-00001-of-00003.safetensors",
757
- "transformer.h.5.mlp.w1.scales": "model-00001-of-00003.safetensors",
758
- "transformer.h.5.mlp.w2.bias": "model-00001-of-00003.safetensors",
759
- "transformer.h.5.mlp.w2.g_idx": "model-00001-of-00003.safetensors",
760
- "transformer.h.5.mlp.w2.qweight": "model-00001-of-00003.safetensors",
761
- "transformer.h.5.mlp.w2.qzeros": "model-00001-of-00003.safetensors",
762
- "transformer.h.5.mlp.w2.scales": "model-00001-of-00003.safetensors",
763
- "transformer.h.6.attn.c_attn.bias": "model-00001-of-00003.safetensors",
764
- "transformer.h.6.attn.c_attn.g_idx": "model-00001-of-00003.safetensors",
765
- "transformer.h.6.attn.c_attn.qweight": "model-00001-of-00003.safetensors",
766
- "transformer.h.6.attn.c_attn.qzeros": "model-00001-of-00003.safetensors",
767
- "transformer.h.6.attn.c_attn.scales": "model-00001-of-00003.safetensors",
768
- "transformer.h.6.attn.c_proj.bias": "model-00001-of-00003.safetensors",
769
- "transformer.h.6.attn.c_proj.g_idx": "model-00001-of-00003.safetensors",
770
- "transformer.h.6.attn.c_proj.qweight": "model-00001-of-00003.safetensors",
771
- "transformer.h.6.attn.c_proj.qzeros": "model-00001-of-00003.safetensors",
772
- "transformer.h.6.attn.c_proj.scales": "model-00001-of-00003.safetensors",
773
- "transformer.h.6.ln_1.weight": "model-00001-of-00003.safetensors",
774
- "transformer.h.6.ln_2.weight": "model-00001-of-00003.safetensors",
775
- "transformer.h.6.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
776
- "transformer.h.6.mlp.c_proj.g_idx": "model-00001-of-00003.safetensors",
777
- "transformer.h.6.mlp.c_proj.qweight": "model-00001-of-00003.safetensors",
778
- "transformer.h.6.mlp.c_proj.qzeros": "model-00001-of-00003.safetensors",
779
- "transformer.h.6.mlp.c_proj.scales": "model-00001-of-00003.safetensors",
780
- "transformer.h.6.mlp.w1.bias": "model-00001-of-00003.safetensors",
781
- "transformer.h.6.mlp.w1.g_idx": "model-00001-of-00003.safetensors",
782
- "transformer.h.6.mlp.w1.qweight": "model-00001-of-00003.safetensors",
783
- "transformer.h.6.mlp.w1.qzeros": "model-00001-of-00003.safetensors",
784
- "transformer.h.6.mlp.w1.scales": "model-00001-of-00003.safetensors",
785
- "transformer.h.6.mlp.w2.bias": "model-00001-of-00003.safetensors",
786
- "transformer.h.6.mlp.w2.g_idx": "model-00001-of-00003.safetensors",
787
- "transformer.h.6.mlp.w2.qweight": "model-00001-of-00003.safetensors",
788
- "transformer.h.6.mlp.w2.qzeros": "model-00001-of-00003.safetensors",
789
- "transformer.h.6.mlp.w2.scales": "model-00001-of-00003.safetensors",
790
- "transformer.h.7.attn.c_attn.bias": "model-00001-of-00003.safetensors",
791
- "transformer.h.7.attn.c_attn.g_idx": "model-00001-of-00003.safetensors",
792
- "transformer.h.7.attn.c_attn.qweight": "model-00001-of-00003.safetensors",
793
- "transformer.h.7.attn.c_attn.qzeros": "model-00001-of-00003.safetensors",
794
- "transformer.h.7.attn.c_attn.scales": "model-00001-of-00003.safetensors",
795
- "transformer.h.7.attn.c_proj.bias": "model-00001-of-00003.safetensors",
796
- "transformer.h.7.attn.c_proj.g_idx": "model-00001-of-00003.safetensors",
797
- "transformer.h.7.attn.c_proj.qweight": "model-00001-of-00003.safetensors",
798
- "transformer.h.7.attn.c_proj.qzeros": "model-00001-of-00003.safetensors",
799
- "transformer.h.7.attn.c_proj.scales": "model-00001-of-00003.safetensors",
800
- "transformer.h.7.ln_1.weight": "model-00001-of-00003.safetensors",
801
- "transformer.h.7.ln_2.weight": "model-00001-of-00003.safetensors",
802
- "transformer.h.7.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
803
- "transformer.h.7.mlp.c_proj.g_idx": "model-00001-of-00003.safetensors",
804
- "transformer.h.7.mlp.c_proj.qweight": "model-00001-of-00003.safetensors",
805
- "transformer.h.7.mlp.c_proj.qzeros": "model-00001-of-00003.safetensors",
806
- "transformer.h.7.mlp.c_proj.scales": "model-00001-of-00003.safetensors",
807
- "transformer.h.7.mlp.w1.bias": "model-00002-of-00003.safetensors",
808
- "transformer.h.7.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
809
- "transformer.h.7.mlp.w1.qweight": "model-00002-of-00003.safetensors",
810
- "transformer.h.7.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
811
- "transformer.h.7.mlp.w1.scales": "model-00002-of-00003.safetensors",
812
- "transformer.h.7.mlp.w2.bias": "model-00002-of-00003.safetensors",
813
- "transformer.h.7.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
814
- "transformer.h.7.mlp.w2.qweight": "model-00002-of-00003.safetensors",
815
- "transformer.h.7.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
816
- "transformer.h.7.mlp.w2.scales": "model-00002-of-00003.safetensors",
817
- "transformer.h.8.attn.c_attn.bias": "model-00002-of-00003.safetensors",
818
- "transformer.h.8.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
819
- "transformer.h.8.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
820
- "transformer.h.8.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
821
- "transformer.h.8.attn.c_attn.scales": "model-00002-of-00003.safetensors",
822
- "transformer.h.8.attn.c_proj.bias": "model-00002-of-00003.safetensors",
823
- "transformer.h.8.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
824
- "transformer.h.8.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
825
- "transformer.h.8.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
826
- "transformer.h.8.attn.c_proj.scales": "model-00002-of-00003.safetensors",
827
- "transformer.h.8.ln_1.weight": "model-00002-of-00003.safetensors",
828
- "transformer.h.8.ln_2.weight": "model-00002-of-00003.safetensors",
829
- "transformer.h.8.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
830
- "transformer.h.8.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
831
- "transformer.h.8.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
832
- "transformer.h.8.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
833
- "transformer.h.8.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
834
- "transformer.h.8.mlp.w1.bias": "model-00002-of-00003.safetensors",
835
- "transformer.h.8.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
836
- "transformer.h.8.mlp.w1.qweight": "model-00002-of-00003.safetensors",
837
- "transformer.h.8.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
838
- "transformer.h.8.mlp.w1.scales": "model-00002-of-00003.safetensors",
839
- "transformer.h.8.mlp.w2.bias": "model-00002-of-00003.safetensors",
840
- "transformer.h.8.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
841
- "transformer.h.8.mlp.w2.qweight": "model-00002-of-00003.safetensors",
842
- "transformer.h.8.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
843
- "transformer.h.8.mlp.w2.scales": "model-00002-of-00003.safetensors",
844
- "transformer.h.9.attn.c_attn.bias": "model-00002-of-00003.safetensors",
845
- "transformer.h.9.attn.c_attn.g_idx": "model-00002-of-00003.safetensors",
846
- "transformer.h.9.attn.c_attn.qweight": "model-00002-of-00003.safetensors",
847
- "transformer.h.9.attn.c_attn.qzeros": "model-00002-of-00003.safetensors",
848
- "transformer.h.9.attn.c_attn.scales": "model-00002-of-00003.safetensors",
849
- "transformer.h.9.attn.c_proj.bias": "model-00002-of-00003.safetensors",
850
- "transformer.h.9.attn.c_proj.g_idx": "model-00002-of-00003.safetensors",
851
- "transformer.h.9.attn.c_proj.qweight": "model-00002-of-00003.safetensors",
852
- "transformer.h.9.attn.c_proj.qzeros": "model-00002-of-00003.safetensors",
853
- "transformer.h.9.attn.c_proj.scales": "model-00002-of-00003.safetensors",
854
- "transformer.h.9.ln_1.weight": "model-00002-of-00003.safetensors",
855
- "transformer.h.9.ln_2.weight": "model-00002-of-00003.safetensors",
856
- "transformer.h.9.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
857
- "transformer.h.9.mlp.c_proj.g_idx": "model-00002-of-00003.safetensors",
858
- "transformer.h.9.mlp.c_proj.qweight": "model-00002-of-00003.safetensors",
859
- "transformer.h.9.mlp.c_proj.qzeros": "model-00002-of-00003.safetensors",
860
- "transformer.h.9.mlp.c_proj.scales": "model-00002-of-00003.safetensors",
861
- "transformer.h.9.mlp.w1.bias": "model-00002-of-00003.safetensors",
862
- "transformer.h.9.mlp.w1.g_idx": "model-00002-of-00003.safetensors",
863
- "transformer.h.9.mlp.w1.qweight": "model-00002-of-00003.safetensors",
864
- "transformer.h.9.mlp.w1.qzeros": "model-00002-of-00003.safetensors",
865
- "transformer.h.9.mlp.w1.scales": "model-00002-of-00003.safetensors",
866
- "transformer.h.9.mlp.w2.bias": "model-00002-of-00003.safetensors",
867
- "transformer.h.9.mlp.w2.g_idx": "model-00002-of-00003.safetensors",
868
- "transformer.h.9.mlp.w2.qweight": "model-00002-of-00003.safetensors",
869
- "transformer.h.9.mlp.w2.qzeros": "model-00002-of-00003.safetensors",
870
- "transformer.h.9.mlp.w2.scales": "model-00002-of-00003.safetensors",
871
- "transformer.ln_f.weight": "model-00003-of-00003.safetensors",
872
- "transformer.wte.weight": "model-00001-of-00003.safetensors"
873
- }
874
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_qwen.py CHANGED
@@ -3,16 +3,14 @@
3
  # This source code is licensed under the license found in the
4
  # LICENSE file in the root directory of this source tree.
5
 
6
- import copy
7
  import importlib
8
  import math
9
- import pathlib
10
  from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
11
 
12
  import torch
13
  import torch.nn.functional as F
14
  import torch.utils.checkpoint
15
- import warnings
16
 
17
  from torch.nn import CrossEntropyLoss
18
  from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
@@ -37,8 +35,6 @@ from torch import nn
37
  SUPPORT_CUDA = torch.cuda.is_available()
38
  SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
39
  SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
40
- SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
41
-
42
 
43
  from .configuration_qwen import QWenConfig
44
  from .qwen_generation_utils import (
@@ -70,18 +66,13 @@ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for remo
70
  向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
71
  """
72
 
73
- _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
74
- We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
75
- 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
76
- """
77
-
78
  apply_rotary_emb_func = None
79
  rms_norm = None
80
  flash_attn_unpadded_func = None
81
- flash_attn_func = None
82
 
83
  def _import_flash_attn():
84
- global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func, flash_attn_func
85
  try:
86
  from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
  apply_rotary_emb_func = __apply_rotary_emb_func
@@ -102,49 +93,20 @@ def _import_flash_attn():
102
 
103
  try:
104
  import flash_attn
105
- _flash_attn_func = None
106
  if not hasattr(flash_attn, '__version__'):
107
  from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
108
  else:
109
  if int(flash_attn.__version__.split(".")[0]) >= 2:
110
- if int(flash_attn.__version__.split(".")[1]) >= 1:
111
- from flash_attn.flash_attn_interface import flash_attn_func as _flash_attn_func
112
  from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
113
  else:
114
  from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
115
  flash_attn_unpadded_func = __flash_attn_unpadded_func
116
- flash_attn_func = _flash_attn_func
117
  except ImportError:
118
  logger.warn(
119
  "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
120
  "https://github.com/Dao-AILab/flash-attention"
121
  )
122
 
123
- def quantize_cache_v(fdata, bits, qmax, qmin):
124
- # b, s, head, h-dim->b, head, s, h-dim
125
- qtype = torch.uint8
126
- device = fdata.device
127
- shape = fdata.shape
128
-
129
- fdata_cal = torch.flatten(fdata, 2)
130
- fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
131
- fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
132
- # Compute params
133
- if qmax.device != fmax.device:
134
- qmax = qmax.to(device)
135
- qmin = qmin.to(device)
136
- scale = (fmax - fmin) / (qmax - qmin)
137
- zero = qmin - fmin / scale
138
- scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
139
- zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
140
- # Quantize
141
- res_data = fdata / scale + zero
142
- qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
143
- return qdata.contiguous(), scale, zero
144
-
145
- def dequantize_cache_torch(qdata, scale, zero):
146
- data = scale * (qdata - zero)
147
- return data
148
 
149
  class FlashSelfAttention(torch.nn.Module):
150
  def __init__(
@@ -164,32 +126,11 @@ class FlashSelfAttention(torch.nn.Module):
164
  self.softmax_scale = softmax_scale
165
  self.dropout_p = attention_dropout
166
 
167
- def unpad_input(self, hidden_states, attention_mask):
168
- valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
169
- seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
170
- indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
171
- max_seqlen_in_batch = seqlens_in_batch.max().item()
172
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
173
- hidden_states = hidden_states[indices]
174
- return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
175
-
176
- def pad_input(self, hidden_states, indices, batch, seqlen):
177
- output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
178
- dtype=hidden_states.dtype)
179
- output[indices] = hidden_states
180
- return rearrange(output, '(b s) ... -> b s ...', b=batch)
181
-
182
- def forward(self, q, k, v, attention_mask=None):
183
  assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
184
  assert all((i.is_cuda for i in (q, k, v)))
185
  batch_size, seqlen_q = q.shape[0], q.shape[1]
186
  seqlen_k = k.shape[1]
187
- seqlen_out = seqlen_q
188
-
189
- if flash_attn_func is not None and batch_size == 1:
190
- dropout_p = self.dropout_p if self.training else 0
191
- output = flash_attn_func(q, k, v, dropout_p, softmax_scale=self.softmax_scale, causal=self.causal)
192
- return output
193
 
194
  q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
195
  cu_seqlens_q = torch.arange(
@@ -200,14 +141,13 @@ class FlashSelfAttention(torch.nn.Module):
200
  device=q.device,
201
  )
202
 
203
- if batch_size > 1 and attention_mask is not None:
204
- k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
205
- if q.size(0) == v.size(0):
206
- q = q[indices_k]
207
- cu_seqlens_q = cu_seqlens_k
208
- seqlen_q = seqlen_k
209
- v = v[indices_k]
210
  else:
 
211
  cu_seqlens_k = torch.arange(
212
  0,
213
  (batch_size + 1) * seqlen_k,
@@ -215,14 +155,7 @@ class FlashSelfAttention(torch.nn.Module):
215
  dtype=torch.int32,
216
  device=q.device,
217
  )
218
-
219
- if self.training:
220
- assert seqlen_k == seqlen_q
221
- is_causal = self.causal
222
- dropout_p = self.dropout_p
223
- else:
224
- is_causal = seqlen_q == seqlen_k
225
- dropout_p = 0
226
 
227
  output = flash_attn_unpadded_func(
228
  q,
@@ -232,15 +165,13 @@ class FlashSelfAttention(torch.nn.Module):
232
  cu_seqlens_k,
233
  seqlen_q,
234
  seqlen_k,
235
- dropout_p,
236
  softmax_scale=self.softmax_scale,
237
  causal=is_causal,
238
  )
239
- if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
240
- output = self.pad_input(output, indices_k, batch_size, seqlen_out)
241
- else:
242
- new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
243
- output = output.view(new_shape)
244
  return output
245
 
246
 
@@ -248,6 +179,14 @@ class QWenAttention(nn.Module):
248
  def __init__(self, config):
249
  super().__init__()
250
 
 
 
 
 
 
 
 
 
251
  self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
252
  self.seq_length = config.seq_length
253
 
@@ -281,8 +220,10 @@ class QWenAttention(nn.Module):
281
  self.core_attention_flash = FlashSelfAttention(
282
  causal=True, attention_dropout=config.attn_dropout_prob
283
  )
 
284
  self.bf16 = config.bf16
285
 
 
286
  self.use_dynamic_ntk = config.use_dynamic_ntk
287
  self.use_logn_attn = config.use_logn_attn
288
 
@@ -290,104 +231,99 @@ class QWenAttention(nn.Module):
290
  math.log(i, self.seq_length) if i > self.seq_length else 1
291
  for i in range(1, 32768)
292
  ]
293
- logn_tensor = torch.tensor(logn_list)[None, :, None, None]
294
- self.register_buffer("logn_tensor", logn_tensor, persistent=False)
295
 
296
  self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
297
- self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
298
- self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
299
- self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
300
- cache_dtype = torch.float
301
- if self.bf16:
302
- cache_dtype=torch.bfloat16
303
- elif config.fp16:
304
- cache_dtype = torch.float16
305
- self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
306
- self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
307
-
308
- if config.use_cache_quantization and config.use_cache_kernel:
309
- # pre check if the support files existing
310
- module_root = pathlib.Path(__file__).parent
311
- src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
312
- if any(not (module_root/src).is_file() for src in src_files):
313
- warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
314
- self.cache_kernels = None
315
- else:
316
- try:
317
- from .cpp_kernels import cache_autogptq_cuda_256
318
- self.cache_kernels = cache_autogptq_cuda_256
319
- except ImportError:
320
- warnings.warn("Failed to import KV cache kernels.")
321
- self.cache_kernels = None
322
-
323
- def _attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
324
- device = query.device
325
- if self.use_cache_quantization:
326
- qk, qk_scale, qk_zero = key
327
- if self.use_cache_kernel and self.cache_kernels is not None:
328
- shape = query.shape[:-1] + (qk.shape[-2],)
329
- attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
330
- self.cache_kernels.vecquant8matmul_batched_faster_old(
331
- query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
332
- qk.transpose(-1, -2).contiguous(),
333
- attn_weights,
334
- qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
335
- qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
336
- # attn_weights = attn_weights.to(query.dtype).contiguous()
337
- else:
338
- key = dequantize_cache_torch(qk, qk_scale, qk_zero)
339
- attn_weights = torch.matmul(query, key.transpose(-1, -2))
340
- else:
341
- attn_weights = torch.matmul(query, key.transpose(-1, -2))
342
 
343
  if self.scale_attn_weights:
344
- if self.use_cache_quantization:
345
- size_temp = value[0].size(-1)
346
- else:
347
- size_temp = value.size(-1)
348
- attn_weights = attn_weights / (size_temp ** 0.5)
 
349
 
 
 
 
 
350
  mask_value = torch.finfo(attn_weights.dtype).min
351
- if causal_mask is not None:
352
- attn_weights = torch.where(
353
- causal_mask, attn_weights.to(attn_weights.dtype), mask_value
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354
  )
 
 
 
 
 
 
 
 
 
 
 
355
 
356
  if attention_mask is not None:
357
  attn_weights = attn_weights + attention_mask
358
 
359
- if self.softmax_in_fp32:
360
- attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
361
- else:
362
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
363
 
364
- attn_weights = attn_weights.type(query.dtype)
 
 
 
 
365
  attn_weights = self.attn_dropout(attn_weights)
366
 
367
  if head_mask is not None:
368
  attn_weights = attn_weights * head_mask
369
 
370
- if self.use_cache_quantization:
371
- qv, qv_scale, qv_zero = value
372
- if self.use_cache_kernel and self.cache_kernels is not None:
373
- shape = attn_weights.shape[:-1] + (query.shape[-1],)
374
- attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
375
- self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
376
- attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
377
- qv.contiguous(), # dtype: int32
378
- attn_output,
379
- qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
380
- qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
381
- if attn_output.dtype != query.dtype:
382
- attn_output = attn_output.to(query.dtype)
383
- attn_weights = attn_weights.to(query.dtype)
384
- else:
385
- value = dequantize_cache_torch(qv, qv_scale, qv_zero)
386
- attn_output = torch.matmul(attn_weights, value)
387
- else:
388
- attn_output = torch.matmul(attn_weights, value)
389
-
390
- attn_output = attn_output.transpose(1, 2)
391
 
392
  return attn_output, attn_weights
393
 
@@ -404,7 +340,7 @@ class QWenAttention(nn.Module):
404
  def forward(
405
  self,
406
  hidden_states: Optional[Tuple[torch.FloatTensor]],
407
- rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
408
  layer_past: Optional[Tuple[torch.Tensor]] = None,
409
  attention_mask: Optional[torch.FloatTensor] = None,
410
  head_mask: Optional[torch.FloatTensor] = None,
@@ -413,6 +349,7 @@ class QWenAttention(nn.Module):
413
  output_attentions: Optional[bool] = False,
414
  use_cache: Optional[bool] = False,
415
  ):
 
416
  mixed_x_layer = self.c_attn(hidden_states)
417
 
418
  query, key, value = mixed_x_layer.split(self.split_size, dim=2)
@@ -421,72 +358,31 @@ class QWenAttention(nn.Module):
421
  key = self._split_heads(key, self.num_heads, self.head_dim)
422
  value = self._split_heads(value, self.num_heads, self.head_dim)
423
 
424
- if rotary_pos_emb_list is not None:
425
  cur_len = query.shape[1]
426
- if len(rotary_pos_emb_list) == 1:
427
- rotary_pos_emb = rotary_pos_emb_list[0]
428
- rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
429
- rotary_pos_emb = (rotary_pos_emb,) * 2
430
- q_pos_emb, k_pos_emb = rotary_pos_emb
431
- # Slice the pos emb for current inference
432
- query = apply_rotary_pos_emb(query, q_pos_emb)
433
- key = apply_rotary_pos_emb(key, k_pos_emb)
434
- else:
435
- query_list = []
436
- key_list = []
437
- for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
438
- rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
439
- rotary_pos_emb = (rotary_pos_emb,) * 2
440
- q_pos_emb, k_pos_emb = rotary_pos_emb
441
- # Slice the pos emb for current inference
442
- query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
443
- key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
444
- query = torch.cat(query_list, dim=0)
445
- key = torch.cat(key_list, dim=0)
446
-
447
- if self.use_cache_quantization:
448
- key = quantize_cache_v(key.permute(0, 2, 1, 3),
449
- bits=8,
450
- qmin=self.cache_qmin,
451
- qmax=self.cache_qmax)
452
- value = quantize_cache_v(value.permute(0, 2, 1, 3),
453
- bits=8,
454
- qmin=self.cache_qmin,
455
- qmax=self.cache_qmax)
456
-
457
 
458
  if layer_past is not None:
459
  past_key, past_value = layer_past[0], layer_past[1]
460
- if self.use_cache_quantization:
461
- # use_cache_quantization:
462
- # present=((q_key,key_scale,key_zero_point),
463
- # (q_value,value_scale,value_zero_point))
464
- key = (torch.cat((past_key[0], key[0]), dim=2),
465
- torch.cat((past_key[1], key[1]), dim=2),
466
- torch.cat((past_key[2], key[2]), dim=2))
467
- value = (torch.cat((past_value[0], value[0]), dim=2),
468
- torch.cat((past_value[1], value[1]), dim=2),
469
- torch.cat((past_value[2], value[2]), dim=2))
470
- else:
471
- # not use_cache_quantization:
472
- # present=(key,value)
473
- key = torch.cat((past_key, key), dim=1)
474
- value = torch.cat((past_value, value), dim=1)
475
 
476
  if use_cache:
477
  present = (key, value)
478
  else:
479
  present = None
480
 
481
- key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
482
- if key_size > self.seq_length and self.use_logn_attn and not self.training:
483
- if self.use_cache_quantization:
484
- seq_start = key[0].size(2) - query.size(1)
485
- seq_end = key[0].size(2)
486
- else:
487
- seq_start = key.size(1) - query.size(1)
488
- seq_end = key.size(1)
489
- logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
490
  query = query * logn_tensor.expand_as(query)
491
 
492
  if (
@@ -496,46 +392,21 @@ class QWenAttention(nn.Module):
496
  and query.is_cuda
497
  ):
498
  q, k, v = query, key, value
499
- attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
 
 
 
 
500
  else:
501
- key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
502
- if query.size(1) == key_size:
503
- causal_mask = torch.tril(
504
- torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
505
- ).view(1, 1, key_size, key_size)
506
- else:
507
- causal_mask = None
508
  query = query.permute(0, 2, 1, 3)
509
- if not self.use_cache_quantization:
510
- key = key.permute(0, 2, 1, 3)
511
- value = value.permute(0, 2, 1, 3)
512
- if (
513
- causal_mask is None
514
- and self.use_flash_attn
515
- and flash_attn_unpadded_func is not None
516
- and not self.is_fp32
517
- and not query.is_cuda
518
- ):
519
- raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
520
-
521
- if not self.use_cache_quantization and SUPPORT_TORCH2:
522
- if attention_mask is not None:
523
- attention_mask = attention_mask.expand(-1, -1, query.size(2), -1)
524
- if causal_mask is not None:
525
- attention_mask = attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
526
- else:
527
- attention_mask = causal_mask
528
- attn_output = F.scaled_dot_product_attention(
529
- query, key, value, attn_mask=attention_mask
530
- ).transpose(1, 2)
531
- attn_weight = None
532
- else:
533
- attn_output, attn_weight = self._attn(
534
- query, key, value, causal_mask, attention_mask, head_mask
535
- )
536
- context_layer = self._merge_heads(
537
- attn_output, self.num_heads, self.head_dim
538
- )
539
 
540
  attn_output = self.c_proj(context_layer)
541
 
@@ -547,8 +418,6 @@ class QWenAttention(nn.Module):
547
  and not self.is_fp32
548
  ):
549
  raise ValueError("Cannot output attentions while using flash-attn")
550
- elif not self.use_cache_quantization and SUPPORT_TORCH2:
551
- raise ValueError("Cannot output attentions while using scaled_dot_product_attention")
552
  else:
553
  outputs += (attn_weight,)
554
 
@@ -574,7 +443,6 @@ class QWenMLP(nn.Module):
574
  output = self.c_proj(intermediate_parallel)
575
  return output
576
 
577
-
578
  class QWenBlock(nn.Module):
579
  def __init__(self, config):
580
  super().__init__()
@@ -596,7 +464,7 @@ class QWenBlock(nn.Module):
596
  def forward(
597
  self,
598
  hidden_states: Optional[Tuple[torch.FloatTensor]],
599
- rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
600
  layer_past: Optional[Tuple[torch.Tensor]] = None,
601
  attention_mask: Optional[torch.FloatTensor] = None,
602
  head_mask: Optional[torch.FloatTensor] = None,
@@ -609,7 +477,7 @@ class QWenBlock(nn.Module):
609
 
610
  attn_outputs = self.attn(
611
  layernorm_output,
612
- rotary_pos_emb_list,
613
  layer_past=layer_past,
614
  attention_mask=attention_mask,
615
  head_mask=head_mask,
@@ -643,7 +511,6 @@ class QWenPreTrainedModel(PreTrainedModel):
643
  is_parallelizable = False
644
  supports_gradient_checkpointing = True
645
  _no_split_modules = ["QWenBlock"]
646
- _skip_keys_device_placement = "past_key_values"
647
 
648
  def __init__(self, *inputs, **kwargs):
649
  super().__init__(*inputs, **kwargs)
@@ -684,7 +551,6 @@ class QWenModel(QWenPreTrainedModel):
684
  self.vocab_size = config.vocab_size
685
  self.num_hidden_layers = config.num_hidden_layers
686
  self.embed_dim = config.hidden_size
687
- self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
688
 
689
  self.gradient_checkpointing = False
690
  self.use_dynamic_ntk = config.use_dynamic_ntk
@@ -694,6 +560,7 @@ class QWenModel(QWenPreTrainedModel):
694
 
695
  self.drop = nn.Dropout(config.emb_dropout_prob)
696
 
 
697
  if config.rotary_pct == 1.0:
698
  self.rotary_ndims = None
699
  else:
@@ -708,13 +575,10 @@ class QWenModel(QWenPreTrainedModel):
708
  )
709
  self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
710
 
711
- self.use_flash_attn = config.use_flash_attn
712
- self.is_fp32 = not (config.bf16 or config.fp16)
713
-
714
  self.h = nn.ModuleList(
715
  [
716
  QWenBlock(
717
- config
718
  )
719
  for i in range(config.num_hidden_layers)
720
  ]
@@ -732,12 +596,6 @@ class QWenModel(QWenPreTrainedModel):
732
  def set_input_embeddings(self, new_embeddings):
733
  self.wte = new_embeddings
734
 
735
- def get_ntk_alpha(self, true_seq_len):
736
- context_value = math.log(true_seq_len / self.seq_length, 2) + 1
737
- ntk_alpha = 2 ** math.ceil(context_value) - 1
738
- ntk_alpha = max(ntk_alpha, 1)
739
- return ntk_alpha
740
-
741
  def forward(
742
  self,
743
  input_ids: Optional[torch.LongTensor] = None,
@@ -794,10 +652,8 @@ class QWenModel(QWenPreTrainedModel):
794
  past_length = 0
795
  past_key_values = tuple([None] * len(self.h))
796
  else:
797
- if self.use_cache_quantization:
798
- past_length = past_key_values[0][0][0].size(2)
799
- else:
800
- past_length = past_key_values[0][0].size(-2)
801
  if position_ids is None:
802
  position_ids = torch.arange(
803
  past_length,
@@ -825,30 +681,21 @@ class QWenModel(QWenPreTrainedModel):
825
  kv_seq_len = hidden_states.size()[1]
826
  if past_key_values[0] is not None:
827
  # past key values[0][0] shape: bs * seq_len * head_num * dim
828
- if self.use_cache_quantization:
829
- kv_seq_len += past_key_values[0][0][0].shape[2]
830
- else:
831
- kv_seq_len += past_key_values[0][0].shape[1]
832
-
833
- if self.training or not self.use_dynamic_ntk:
834
- ntk_alpha_list = [1.0]
835
- elif kv_seq_len != hidden_states.size()[1]:
836
- ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
837
  else:
838
- ntk_alpha_list = []
839
- if attention_mask is not None and kv_seq_len > self.seq_length:
840
- true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
841
- for i in range(hidden_states.size()[0]):
842
- true_seq_len = true_seq_lens[i].item()
843
- ntk_alpha = self.get_ntk_alpha(true_seq_len)
844
- ntk_alpha_list.append(ntk_alpha)
845
- else:
846
- ntk_alpha = self.get_ntk_alpha(kv_seq_len)
847
- ntk_alpha_list.append(ntk_alpha)
848
- self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
849
- rotary_pos_emb_list = [
850
- self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
851
- ]
852
 
853
  hidden_states = self.drop(hidden_states)
854
  output_shape = input_shape + (hidden_states.size(-1),)
@@ -880,7 +727,7 @@ class QWenModel(QWenPreTrainedModel):
880
  outputs = torch.utils.checkpoint.checkpoint(
881
  create_custom_forward(block),
882
  hidden_states,
883
- rotary_pos_emb_list,
884
  None,
885
  attention_mask,
886
  head_mask[i],
@@ -891,7 +738,7 @@ class QWenModel(QWenPreTrainedModel):
891
  outputs = block(
892
  hidden_states,
893
  layer_past=layer_past,
894
- rotary_pos_emb_list=rotary_pos_emb_list,
895
  attention_mask=attention_mask,
896
  head_mask=head_mask[i],
897
  encoder_hidden_states=encoder_hidden_states,
@@ -902,10 +749,10 @@ class QWenModel(QWenPreTrainedModel):
902
 
903
  hidden_states = outputs[0]
904
  if use_cache is True:
905
- presents = presents + (outputs[1],)
906
 
907
  if output_attentions:
908
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
909
 
910
  hidden_states = self.ln_f(hidden_states)
911
  hidden_states = hidden_states.view(output_shape)
@@ -963,7 +810,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
963
  logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
964
  elif SUPPORT_FP16:
965
  logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
966
-
967
  if config.use_flash_attn == "auto":
968
  if config.bf16 or config.fp16:
969
  logger.warn("Try importing flash-attention for faster inference...")
@@ -996,13 +843,22 @@ class QWenLMHeadModel(QWenPreTrainedModel):
996
  def prepare_inputs_for_generation(
997
  self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
998
  ):
 
999
  if past_key_values:
1000
  input_ids = input_ids[:, -1].unsqueeze(-1)
 
 
1001
 
1002
- if input_ids.size(0) == 1:
1003
- attention_mask = None
 
 
 
 
 
 
1004
  else:
1005
- attention_mask = kwargs.get("attention_mask", None)
1006
 
1007
  if inputs_embeds is not None and past_key_values is None:
1008
  model_inputs = {"inputs_embeds": inputs_embeds}
@@ -1013,7 +869,9 @@ class QWenLMHeadModel(QWenPreTrainedModel):
1013
  {
1014
  "past_key_values": past_key_values,
1015
  "use_cache": kwargs.get("use_cache"),
 
1016
  "attention_mask": attention_mask,
 
1017
  }
1018
  )
1019
  return model_inputs
@@ -1100,6 +958,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
1100
  query: str,
1101
  history: Optional[HistoryType],
1102
  system: str = "You are a helpful assistant.",
 
1103
  stream: Optional[bool] = _SENTINEL,
1104
  stop_words_ids: Optional[List[List[int]]] = None,
1105
  generation_config: Optional[GenerationConfig] = None,
@@ -1111,10 +970,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
1111
  assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1112
  if history is None:
1113
  history = []
1114
- else:
1115
- # make a copy of the user's input such that is is left untouched
1116
- history = copy.deepcopy(history)
1117
-
1118
  if stop_words_ids is None:
1119
  stop_words_ids = []
1120
 
@@ -1152,11 +1007,8 @@ class QWenLMHeadModel(QWenPreTrainedModel):
1152
  errors='replace'
1153
  )
1154
 
1155
- # as history is a copy of the user inputs,
1156
- # we can always return the new turn to the user.
1157
- # separating input history and output history also enables the user
1158
- # to implement more complex history management
1159
- history.append((query, response))
1160
 
1161
  return response, history
1162
 
@@ -1274,17 +1126,16 @@ class RotaryEmbedding(torch.nn.Module):
1274
  super().__init__()
1275
  self.dim = dim
1276
  self.base = base
1277
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1278
- self.register_buffer("inv_freq", inv_freq, persistent=False)
1279
  if importlib.util.find_spec("einops") is None:
1280
  raise RuntimeError("einops is required for Rotary Embedding")
1281
 
1282
  self._rotary_pos_emb_cache = None
1283
  self._seq_len_cached = 0
1284
  self._ntk_alpha_cached = 1.0
1285
- self._ntk_alpha_cached_list = [1.0]
1286
 
1287
- def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
 
1288
  if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1289
  base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1290
  self.inv_freq = 1.0 / (
@@ -1298,7 +1149,7 @@ class RotaryEmbedding(torch.nn.Module):
1298
  self._ntk_alpha_cached = ntk_alpha
1299
  seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1300
  freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1301
-
1302
  emb = torch.cat((freqs, freqs), dim=-1)
1303
  from einops import rearrange
1304
 
@@ -1307,10 +1158,10 @@ class RotaryEmbedding(torch.nn.Module):
1307
  cos, sin = emb.cos(), emb.sin()
1308
  self._rotary_pos_emb_cache = [cos, sin]
1309
 
1310
- def forward(self, max_seq_len, ntk_alpha=1.0):
1311
- self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
1312
  cos, sin = self._rotary_pos_emb_cache
1313
- return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
1314
 
1315
 
1316
  def _rotate_half(x):
@@ -1322,28 +1173,21 @@ def _rotate_half(x):
1322
 
1323
 
1324
  def apply_rotary_pos_emb(t, freqs):
1325
- """ Apply rotary embedding to the first rotary_dim of the iput
1326
-
1327
- Arguments:
1328
- t (tensor(batch_size, seq_len, n_head, head_dim)):
1329
- the input embedding/hidden states
1330
- freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
1331
- the cached cos/sin position embeddings
1332
- """
1333
- rot_dim = freqs[0].shape[-1]
1334
  cos, sin = freqs
1335
- t_float = t.float()
1336
  if apply_rotary_emb_func is not None and t.is_cuda:
1337
- # apply_rotary_emb in flash_attn requires cos/sin to be of
1338
- # shape (seqlen, rotary_dim / 2) and apply rotary embedding
1339
- # to the first rotary_dim of the input
1340
- cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1341
- sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1342
- return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
1343
  else:
1344
- t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
1345
- t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
1346
- return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
 
 
 
 
1347
 
1348
 
1349
  class RMSNorm(torch.nn.Module):
 
3
  # This source code is licensed under the license found in the
4
  # LICENSE file in the root directory of this source tree.
5
 
 
6
  import importlib
7
  import math
 
8
  from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
9
 
10
  import torch
11
  import torch.nn.functional as F
12
  import torch.utils.checkpoint
13
+ from torch.cuda.amp import autocast
14
 
15
  from torch.nn import CrossEntropyLoss
16
  from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
 
35
  SUPPORT_CUDA = torch.cuda.is_available()
36
  SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
37
  SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
 
 
38
 
39
  from .configuration_qwen import QWenConfig
40
  from .qwen_generation_utils import (
 
66
  向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
67
  """
68
 
 
 
 
 
 
69
  apply_rotary_emb_func = None
70
  rms_norm = None
71
  flash_attn_unpadded_func = None
72
+
73
 
74
  def _import_flash_attn():
75
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
76
  try:
77
  from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
78
  apply_rotary_emb_func = __apply_rotary_emb_func
 
93
 
94
  try:
95
  import flash_attn
 
96
  if not hasattr(flash_attn, '__version__'):
97
  from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
98
  else:
99
  if int(flash_attn.__version__.split(".")[0]) >= 2:
 
 
100
  from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
101
  else:
102
  from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
103
  flash_attn_unpadded_func = __flash_attn_unpadded_func
 
104
  except ImportError:
105
  logger.warn(
106
  "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
107
  "https://github.com/Dao-AILab/flash-attention"
108
  )
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
  class FlashSelfAttention(torch.nn.Module):
112
  def __init__(
 
126
  self.softmax_scale = softmax_scale
127
  self.dropout_p = attention_dropout
128
 
129
+ def forward(self, q, k, v):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
131
  assert all((i.is_cuda for i in (q, k, v)))
132
  batch_size, seqlen_q = q.shape[0], q.shape[1]
133
  seqlen_k = k.shape[1]
 
 
 
 
 
 
134
 
135
  q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
136
  cu_seqlens_q = torch.arange(
 
141
  device=q.device,
142
  )
143
 
144
+ if self.training:
145
+ assert seqlen_k == seqlen_q
146
+
147
+ is_causal = self.causal
148
+ cu_seqlens_k = cu_seqlens_q
 
 
149
  else:
150
+ is_causal = seqlen_q == seqlen_k
151
  cu_seqlens_k = torch.arange(
152
  0,
153
  (batch_size + 1) * seqlen_k,
 
155
  dtype=torch.int32,
156
  device=q.device,
157
  )
158
+ self.dropout_p = 0
 
 
 
 
 
 
 
159
 
160
  output = flash_attn_unpadded_func(
161
  q,
 
165
  cu_seqlens_k,
166
  seqlen_q,
167
  seqlen_k,
168
+ self.dropout_p,
169
  softmax_scale=self.softmax_scale,
170
  causal=is_causal,
171
  )
172
+
173
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
174
+ output = output.view(new_shape)
 
 
175
  return output
176
 
177
 
 
179
  def __init__(self, config):
180
  super().__init__()
181
 
182
+ max_positions = config.max_position_embeddings
183
+ self.register_buffer(
184
+ "bias",
185
+ torch.tril(
186
+ torch.ones((max_positions, max_positions), dtype=torch.bool)
187
+ ).view(1, 1, max_positions, max_positions),
188
+ persistent=False,
189
+ )
190
  self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
191
  self.seq_length = config.seq_length
192
 
 
220
  self.core_attention_flash = FlashSelfAttention(
221
  causal=True, attention_dropout=config.attn_dropout_prob
222
  )
223
+
224
  self.bf16 = config.bf16
225
 
226
+
227
  self.use_dynamic_ntk = config.use_dynamic_ntk
228
  self.use_logn_attn = config.use_logn_attn
229
 
 
231
  math.log(i, self.seq_length) if i > self.seq_length else 1
232
  for i in range(1, 32768)
233
  ]
234
+ self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
 
235
 
236
  self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
237
+
238
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
239
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240
 
241
  if self.scale_attn_weights:
242
+ attn_weights = attn_weights / torch.full(
243
+ [],
244
+ value.size(-1) ** 0.5,
245
+ dtype=attn_weights.dtype,
246
+ device=attn_weights.device,
247
+ )
248
 
249
+ query_length, key_length = query.size(-2), key.size(-2)
250
+ causal_mask = self.bias[
251
+ :, :, key_length - query_length : key_length, :key_length
252
+ ]
253
  mask_value = torch.finfo(attn_weights.dtype).min
254
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
255
+ attn_weights.device
256
+ )
257
+ attn_weights = torch.where(
258
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
259
+ )
260
+
261
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
262
+
263
+ attn_weights = attn_weights.type(value.dtype)
264
+ attn_weights = self.attn_dropout(attn_weights)
265
+
266
+ if head_mask is not None:
267
+ attn_weights = attn_weights * head_mask
268
+
269
+ attn_output = torch.matmul(attn_weights, value)
270
+ attn_output = attn_output.transpose(1, 2)
271
+
272
+ return attn_output, attn_weights
273
+
274
+ def _upcast_and_reordered_attn(
275
+ self, query, key, value, attention_mask=None, head_mask=None
276
+ ):
277
+ bsz, num_heads, q_seq_len, dk = query.size()
278
+ _, _, k_seq_len, _ = key.size()
279
+
280
+ attn_weights = torch.empty(
281
+ bsz * num_heads,
282
+ q_seq_len,
283
+ k_seq_len,
284
+ dtype=torch.float32,
285
+ device=query.device,
286
+ )
287
+
288
+ scale_factor = 1.0
289
+ if self.scale_attn_weights:
290
+ scale_factor /= float(value.size(-1)) ** 0.5
291
+
292
+ with autocast(enabled=False):
293
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
294
+ -1, dk, k_seq_len
295
+ )
296
+ attn_weights = torch.baddbmm(
297
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
298
  )
299
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
300
+
301
+ query_length, key_length = query.size(-2), key.size(-2)
302
+ causal_mask = self.bias[
303
+ :, :, key_length - query_length : key_length, :key_length
304
+ ]
305
+ mask_value = torch.finfo(attn_weights.dtype).min
306
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
307
+ attn_weights.device
308
+ )
309
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
310
 
311
  if attention_mask is not None:
312
  attn_weights = attn_weights + attention_mask
313
 
314
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 
 
 
315
 
316
+ if attn_weights.dtype != torch.float32:
317
+ raise RuntimeError(
318
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
319
+ )
320
+ attn_weights = attn_weights.type(value.dtype)
321
  attn_weights = self.attn_dropout(attn_weights)
322
 
323
  if head_mask is not None:
324
  attn_weights = attn_weights * head_mask
325
 
326
+ attn_output = torch.matmul(attn_weights, value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327
 
328
  return attn_output, attn_weights
329
 
 
340
  def forward(
341
  self,
342
  hidden_states: Optional[Tuple[torch.FloatTensor]],
343
+ rotary_pos_emb: Optional[List[torch.Tensor]] = None,
344
  layer_past: Optional[Tuple[torch.Tensor]] = None,
345
  attention_mask: Optional[torch.FloatTensor] = None,
346
  head_mask: Optional[torch.FloatTensor] = None,
 
349
  output_attentions: Optional[bool] = False,
350
  use_cache: Optional[bool] = False,
351
  ):
352
+
353
  mixed_x_layer = self.c_attn(hidden_states)
354
 
355
  query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 
358
  key = self._split_heads(key, self.num_heads, self.head_dim)
359
  value = self._split_heads(value, self.num_heads, self.head_dim)
360
 
361
+ if rotary_pos_emb is not None:
362
  cur_len = query.shape[1]
363
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
364
+ rotary_pos_emb = (rotary_pos_emb,) * 2
365
+ q_pos_emb, k_pos_emb = rotary_pos_emb
366
+ # Slice the pos emb for current inference
367
+ query = apply_rotary_pos_emb(query, q_pos_emb)
368
+ key = apply_rotary_pos_emb(key, k_pos_emb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
 
370
  if layer_past is not None:
371
  past_key, past_value = layer_past[0], layer_past[1]
372
+ key = torch.cat((past_key, key), dim=1)
373
+ value = torch.cat((past_value, value), dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
374
 
375
  if use_cache:
376
  present = (key, value)
377
  else:
378
  present = None
379
 
380
+ if self.use_logn_attn and not self.training:
381
+ if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
382
+ self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
383
+ seq_start = key.size(1) - query.size(1)
384
+ seq_end = key.size(1)
385
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
 
 
 
386
  query = query * logn_tensor.expand_as(query)
387
 
388
  if (
 
392
  and query.is_cuda
393
  ):
394
  q, k, v = query, key, value
395
+ context_layer = self.core_attention_flash(q, k, v)
396
+
397
+ # b s h d -> b s (h d)
398
+ context_layer = context_layer.flatten(2,3).contiguous()
399
+
400
  else:
 
 
 
 
 
 
 
401
  query = query.permute(0, 2, 1, 3)
402
+ key = key.permute(0, 2, 1, 3)
403
+ value = value.permute(0, 2, 1, 3)
404
+ attn_output, attn_weight = self._attn(
405
+ query, key, value, attention_mask, head_mask
406
+ )
407
+ context_layer = self._merge_heads(
408
+ attn_output, self.num_heads, self.head_dim
409
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410
 
411
  attn_output = self.c_proj(context_layer)
412
 
 
418
  and not self.is_fp32
419
  ):
420
  raise ValueError("Cannot output attentions while using flash-attn")
 
 
421
  else:
422
  outputs += (attn_weight,)
423
 
 
443
  output = self.c_proj(intermediate_parallel)
444
  return output
445
 
 
446
  class QWenBlock(nn.Module):
447
  def __init__(self, config):
448
  super().__init__()
 
464
  def forward(
465
  self,
466
  hidden_states: Optional[Tuple[torch.FloatTensor]],
467
+ rotary_pos_emb: Optional[List[torch.Tensor]] = None,
468
  layer_past: Optional[Tuple[torch.Tensor]] = None,
469
  attention_mask: Optional[torch.FloatTensor] = None,
470
  head_mask: Optional[torch.FloatTensor] = None,
 
477
 
478
  attn_outputs = self.attn(
479
  layernorm_output,
480
+ rotary_pos_emb,
481
  layer_past=layer_past,
482
  attention_mask=attention_mask,
483
  head_mask=head_mask,
 
511
  is_parallelizable = False
512
  supports_gradient_checkpointing = True
513
  _no_split_modules = ["QWenBlock"]
 
514
 
515
  def __init__(self, *inputs, **kwargs):
516
  super().__init__(*inputs, **kwargs)
 
551
  self.vocab_size = config.vocab_size
552
  self.num_hidden_layers = config.num_hidden_layers
553
  self.embed_dim = config.hidden_size
 
554
 
555
  self.gradient_checkpointing = False
556
  self.use_dynamic_ntk = config.use_dynamic_ntk
 
560
 
561
  self.drop = nn.Dropout(config.emb_dropout_prob)
562
 
563
+
564
  if config.rotary_pct == 1.0:
565
  self.rotary_ndims = None
566
  else:
 
575
  )
576
  self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
577
 
 
 
 
578
  self.h = nn.ModuleList(
579
  [
580
  QWenBlock(
581
+ config,
582
  )
583
  for i in range(config.num_hidden_layers)
584
  ]
 
596
  def set_input_embeddings(self, new_embeddings):
597
  self.wte = new_embeddings
598
 
 
 
 
 
 
 
599
  def forward(
600
  self,
601
  input_ids: Optional[torch.LongTensor] = None,
 
652
  past_length = 0
653
  past_key_values = tuple([None] * len(self.h))
654
  else:
655
+ past_length = past_key_values[0][0].size(-2)
656
+
 
 
657
  if position_ids is None:
658
  position_ids = torch.arange(
659
  past_length,
 
681
  kv_seq_len = hidden_states.size()[1]
682
  if past_key_values[0] is not None:
683
  # past key values[0][0] shape: bs * seq_len * head_num * dim
684
+ kv_seq_len += past_key_values[0][0].shape[1]
685
+ if (
686
+ self.use_dynamic_ntk
687
+ and kv_seq_len == hidden_states.size()[1]
688
+ and not self.training
689
+ ):
690
+ context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
691
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
692
+ ntk_alpha = max(ntk_alpha, 1)
693
  else:
694
+ ntk_alpha = self.rotary_emb._ntk_alpha_cached
695
+
696
+ rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha)
697
+ for idx in range(len(rotary_pos_emb)):
698
+ rotary_pos_emb[idx] = rotary_pos_emb[idx].to(hidden_states.device)
 
 
 
 
 
 
 
 
 
699
 
700
  hidden_states = self.drop(hidden_states)
701
  output_shape = input_shape + (hidden_states.size(-1),)
 
727
  outputs = torch.utils.checkpoint.checkpoint(
728
  create_custom_forward(block),
729
  hidden_states,
730
+ rotary_pos_emb,
731
  None,
732
  attention_mask,
733
  head_mask[i],
 
738
  outputs = block(
739
  hidden_states,
740
  layer_past=layer_past,
741
+ rotary_pos_emb=rotary_pos_emb,
742
  attention_mask=attention_mask,
743
  head_mask=head_mask[i],
744
  encoder_hidden_states=encoder_hidden_states,
 
749
 
750
  hidden_states = outputs[0]
751
  if use_cache is True:
752
+ presents = presents + (outputs[2 if output_attentions else 1],)
753
 
754
  if output_attentions:
755
+ all_self_attentions = all_self_attentions + (outputs[1],)
756
 
757
  hidden_states = self.ln_f(hidden_states)
758
  hidden_states = hidden_states.view(output_shape)
 
810
  logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
811
  elif SUPPORT_FP16:
812
  logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
813
+
814
  if config.use_flash_attn == "auto":
815
  if config.bf16 or config.fp16:
816
  logger.warn("Try importing flash-attention for faster inference...")
 
843
  def prepare_inputs_for_generation(
844
  self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
845
  ):
846
+ token_type_ids = kwargs.get("token_type_ids", None)
847
  if past_key_values:
848
  input_ids = input_ids[:, -1].unsqueeze(-1)
849
+ if token_type_ids is not None:
850
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
851
 
852
+ attention_mask = kwargs.get("attention_mask", None)
853
+ position_ids = kwargs.get("position_ids", None)
854
+
855
+ if attention_mask is not None and position_ids is None:
856
+ position_ids = attention_mask.long().cumsum(-1) - 1
857
+ position_ids.masked_fill_(attention_mask == 0, 1)
858
+ if past_key_values:
859
+ position_ids = position_ids[:, -1].unsqueeze(-1)
860
  else:
861
+ position_ids = None
862
 
863
  if inputs_embeds is not None and past_key_values is None:
864
  model_inputs = {"inputs_embeds": inputs_embeds}
 
869
  {
870
  "past_key_values": past_key_values,
871
  "use_cache": kwargs.get("use_cache"),
872
+ "position_ids": position_ids,
873
  "attention_mask": attention_mask,
874
+ "token_type_ids": token_type_ids,
875
  }
876
  )
877
  return model_inputs
 
958
  query: str,
959
  history: Optional[HistoryType],
960
  system: str = "You are a helpful assistant.",
961
+ append_history: bool = True,
962
  stream: Optional[bool] = _SENTINEL,
963
  stop_words_ids: Optional[List[List[int]]] = None,
964
  generation_config: Optional[GenerationConfig] = None,
 
970
  assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
971
  if history is None:
972
  history = []
 
 
 
 
973
  if stop_words_ids is None:
974
  stop_words_ids = []
975
 
 
1007
  errors='replace'
1008
  )
1009
 
1010
+ if append_history:
1011
+ history.append((query, response))
 
 
 
1012
 
1013
  return response, history
1014
 
 
1126
  super().__init__()
1127
  self.dim = dim
1128
  self.base = base
1129
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
 
1130
  if importlib.util.find_spec("einops") is None:
1131
  raise RuntimeError("einops is required for Rotary Embedding")
1132
 
1133
  self._rotary_pos_emb_cache = None
1134
  self._seq_len_cached = 0
1135
  self._ntk_alpha_cached = 1.0
 
1136
 
1137
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1138
+ seqlen = max_seq_len + offset
1139
  if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1140
  base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1141
  self.inv_freq = 1.0 / (
 
1149
  self._ntk_alpha_cached = ntk_alpha
1150
  seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1151
  freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1152
+
1153
  emb = torch.cat((freqs, freqs), dim=-1)
1154
  from einops import rearrange
1155
 
 
1158
  cos, sin = emb.cos(), emb.sin()
1159
  self._rotary_pos_emb_cache = [cos, sin]
1160
 
1161
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1162
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1163
  cos, sin = self._rotary_pos_emb_cache
1164
+ return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
1165
 
1166
 
1167
  def _rotate_half(x):
 
1173
 
1174
 
1175
  def apply_rotary_pos_emb(t, freqs):
 
 
 
 
 
 
 
 
 
1176
  cos, sin = freqs
 
1177
  if apply_rotary_emb_func is not None and t.is_cuda:
1178
+ t_ = t.float()
1179
+ cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
1180
+ sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
1181
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1182
+ return output
 
1183
  else:
1184
+ rot_dim = freqs[0].shape[-1]
1185
+ cos, sin = freqs
1186
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1187
+ t_ = t_.float()
1188
+ t_pass_ = t_pass_.float()
1189
+ t_ = (t_ * cos) + (_rotate_half(t_) * sin)
1190
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1191
 
1192
 
1193
  class RMSNorm(torch.nn.Module):
quantize_config.json CHANGED
@@ -7,5 +7,5 @@
7
  "sym": true,
8
  "true_sequential": true,
9
  "model_name_or_path": null,
10
- "model_file_base_name": "model"
11
  }
 
7
  "sym": true,
8
  "true_sequential": true,
9
  "model_name_or_path": null,
10
+ "model_file_base_name": null
11
  }
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ transformers==4.31.0
2
+ accelerate
3
+ tiktoken
4
+ einops
5
+ transformers_stream_generator==0.0.4
6
+ scipy
tokenization_qwen.py CHANGED
@@ -27,22 +27,11 @@ IMEND = "<|im_end|>"
27
  # regular texts, the surface forms of special tokens need to be
28
  # as different as possible to minimize the impact
29
  EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
- # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
- SPECIAL_START_ID = 151643
32
- SPECIAL_TOKENS = tuple(
33
- enumerate(
34
- (
35
- (
36
- ENDOFTEXT,
37
- IMSTART,
38
- IMEND,
39
- )
40
- + EXTRAS
41
- ),
42
- start=SPECIAL_START_ID,
43
- )
44
- )
45
- SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
 
47
 
48
  def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
@@ -53,7 +42,6 @@ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
53
  for token, rank in (line.split() for line in contents.splitlines() if line)
54
  }
55
 
56
-
57
  class QWenTokenizer(PreTrainedTokenizer):
58
  """QWen tokenizer."""
59
 
@@ -63,35 +51,20 @@ class QWenTokenizer(PreTrainedTokenizer):
63
  self,
64
  vocab_file,
65
  errors="replace",
66
- extra_vocab_file=None,
67
  **kwargs,
68
  ):
69
  super().__init__(**kwargs)
70
 
71
- # how to handle errors in decoding UTF-8 byte sequences
72
- # use ignore if you are in streaming inference
73
- self.errors = errors
74
 
75
- self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
  self.special_tokens = {
77
  token: index
78
- for index, token in SPECIAL_TOKENS
 
 
79
  }
80
 
81
- # try load extra vocab from file
82
- if extra_vocab_file is not None:
83
- used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
- extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
- for token, index in extra_mergeable_ranks.items():
86
- if token in self.mergeable_ranks:
87
- logger.info(f"extra token {token} exists, skipping")
88
- continue
89
- if index in used_ids:
90
- logger.info(f'the index {index} for extra token {token} exists, skipping')
91
- continue
92
- self.mergeable_ranks[token] = index
93
- # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
-
95
  enc = tiktoken.Encoding(
96
  "Qwen",
97
  pat_str=PAT_STR,
@@ -113,23 +86,6 @@ class QWenTokenizer(PreTrainedTokenizer):
113
  self.im_start_id = self.special_tokens[IMSTART]
114
  self.im_end_id = self.special_tokens[IMEND]
115
 
116
- def __getstate__(self):
117
- # for pickle lovers
118
- state = self.__dict__.copy()
119
- del state["tokenizer"]
120
- return state
121
-
122
- def __setstate__(self, state):
123
- # tokenizer is not python native; don't pass it; rebuild it
124
- self.__dict__.update(state)
125
- enc = tiktoken.Encoding(
126
- "Qwen",
127
- pat_str=PAT_STR,
128
- mergeable_ranks=self.mergeable_ranks,
129
- special_tokens=self.special_tokens,
130
- )
131
- self.tokenizer = enc
132
-
133
  def __len__(self) -> int:
134
  return self.tokenizer.n_vocab
135
 
@@ -152,17 +108,13 @@ class QWenTokenizer(PreTrainedTokenizer):
152
  ids.append(self.mergeable_ranks.get(token))
153
  return ids
154
 
155
- def _add_tokens(
156
- self,
157
- new_tokens: Union[List[str], List[AddedToken]],
158
- special_tokens: bool = False,
159
- ) -> int:
160
  if not special_tokens and new_tokens:
161
- raise ValueError("Adding regular tokens is not supported")
162
  for token in new_tokens:
163
  surface_form = token.content if isinstance(token, AddedToken) else token
164
- if surface_form not in SPECIAL_TOKENS_SET:
165
- raise ValueError("Adding unknown special tokens is not supported")
166
  return 0
167
 
168
  def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
 
27
  # regular texts, the surface forms of special tokens need to be
28
  # as different as possible to minimize the impact
29
  EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ SPECIAL_TOKENS = (
31
+ ENDOFTEXT,
32
+ IMSTART,
33
+ IMEND,
34
+ ) + EXTRAS
 
 
 
 
 
 
 
 
 
 
 
35
 
36
 
37
  def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
 
42
  for token, rank in (line.split() for line in contents.splitlines() if line)
43
  }
44
 
 
45
  class QWenTokenizer(PreTrainedTokenizer):
46
  """QWen tokenizer."""
47
 
 
51
  self,
52
  vocab_file,
53
  errors="replace",
 
54
  **kwargs,
55
  ):
56
  super().__init__(**kwargs)
57
 
58
+ self.errors = errors # how to handle errors in decoding
 
 
59
 
60
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
61
  self.special_tokens = {
62
  token: index
63
+ for index, token in enumerate(
64
+ SPECIAL_TOKENS, start=len(self.mergeable_ranks)
65
+ )
66
  }
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  enc = tiktoken.Encoding(
69
  "Qwen",
70
  pat_str=PAT_STR,
 
86
  self.im_start_id = self.special_tokens[IMSTART]
87
  self.im_end_id = self.special_tokens[IMEND]
88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  def __len__(self) -> int:
90
  return self.tokenizer.n_vocab
91
 
 
108
  ids.append(self.mergeable_ranks.get(token))
109
  return ids
110
 
111
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
 
 
 
 
112
  if not special_tokens and new_tokens:
113
+ raise ValueError('Adding regular tokens is not supported')
114
  for token in new_tokens:
115
  surface_form = token.content if isinstance(token, AddedToken) else token
116
+ if surface_form not in SPECIAL_TOKENS:
117
+ raise ValueError('Adding unknown special tokens is not supported')
118
  return 0
119
 
120
  def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
tokenizer_config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "model_max_length": 32768,
3
  "tokenizer_class": "QWenTokenizer",
4
  "auto_map": {
5
  "AutoTokenizer": [
 
1
  {
2
+ "model_max_length": 8192,
3
  "tokenizer_class": "QWenTokenizer",
4
  "auto_map": {
5
  "AutoTokenizer": [