File size: 8,127 Bytes
34df60f
4f22134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34df60f
4f22134
34df60f
4f22134
 
34df60f
4f22134
34df60f
 
 
4f22134
34df60f
4f22134
 
34df60f
 
4f22134
 
34df60f
4f22134
34df60f
4f22134
34df60f
4f22134
34df60f
4f22134
 
34df60f
4f22134
34df60f
4f22134
 
 
 
34df60f
4f22134
 
34df60f
4f22134
 
 
 
 
 
34df60f
4f22134
 
 
34df60f
4f22134
34df60f
4f22134
 
 
 
 
34df60f
4f22134
34df60f
4f22134
 
 
 
34df60f
4f22134
34df60f
4f22134
34df60f
4f22134
34df60f
4f22134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34df60f
4f22134
34df60f
4f22134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
license: cc-by-nc-4.0
base_model: google/gemma-7b-it
tags:
- generated_from_trainer
- axolotl
- gemma
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
model-index:
- name: gemma-7b-openhermes
  results: []
datasets:
- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gemma-7b-openhermes



![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/mh-NUO_aNbQpD_NAuFv7g.jpeg)

gemma-7b-openhermes is a variant of the Gemma 7B language model, which has been further fine-tuned on the OpenHermes-2.5 preference dataset 
using QLoRA.


* [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)
* [mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha)

</details><br>

## Usage

### Chat Template

The instruction-tuned models use a chat template that must be adhered to for conversational use.
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.

Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:

```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model_id = "abideen/gemma-7b-openhermes"
dtype = torch.bfloat16

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="cuda",
    torch_dtype=dtype,
)

chat = [{ "role": "user", "content": "What is a Language Model?" }]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```

After the prompt is ready, generation can be performed like this:

```py
inputs = tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=250)
print(tokenizer.decode(outputs[0]))
```

### Inputs and outputs

*   **Input:** Text string, such as a question, a prompt, or a document to be
    summarized.
*   **Output:** Generated English-language text in response to the input, such
    as an answer to a question, or a summary of a document.

## 🏆 Evaluation results

# Nous Benchmark

Agieval

| Task                                      | Version | Metric | Value |   | StdErr |
|-------------------------------------------|---------|--------|-------|---|---------|
| agieval\_aqua\_rat                        | 0       | acc    | 24.80 | _ | 2.72    |
| agieval\_aqua\_rat                        | 0       | acc\_norm | 24.80 | _ | 2.72    |
| agieval\_logiqa\_en                      | 0       | acc    | 20.89 | _ | 1.59    |
| agieval\_logiqa\_en                      | 0       | acc\_norm | 23.35 | _ | 1.66    |
| agieval\_lsat\_ar                        | 0       | acc    | 21.74 | _ | 2.73    |
| agieval\_lsat\_ar                        | 0       | acc\_norm | 20.43 | _ | 2.66    |
| agieval\_lsat\_lr                        | 0       | acc    | 15.49 | _ | 1.60    |
| agieval\_lsat\_lr                        | 0       | acc\_norm | 20.59 | _ | 1.79    |
| agieval\_lsat\_rc                        | 0       | acc    | 17.10 | _ | 2.30    |
| agieval\_lsat\_rc                        | 0       | acc\_norm | 17.84 | _ | 2.34    |
| agieval\_sat\_en                         | 0       | acc    | 29.61 | _ | 3.19    |
| agieval\_sat\_en                         | 0       | acc\_norm | 29.61 | _ | 3.19    |
| agieval\_sat\_en\_without\_passage       | 0       | acc    | 26.21 | _ | 3.07    |
| agieval\_sat\_en\_without\_passage       | 0       | acc\_norm | 24.76 | _ | 3.01    |
| agieval\_sat\_math                        | 0       | acc    | 22.73 | _ | 2.83    |
| agieval\_sat\_math                        | 0       | acc\_norm | 22.73 | _ | 2.83    |
Average: 22.29

GPT4ALL

| Task          | Version | Metric     | Value   |   | StdErr      |
|---------------|---------|------------|---------|---|-------------|
| arc_challenge | 0       | acc        | 20.14   | _ | 1.17        |
| arc_challenge | 0       | acc_norm   | 22.87   | _ | 1.23        |
| arc_easy      | 0       | acc        | 32.37   | _ | 0.96        |
| arc_easy      | 0       | acc_norm   | 31.61   | _ | 0.95        |
| boolq         | 1       | acc        | 45.78   | _ | 0.87        |
| hellaswag     | 0       | acc        | 32.03   | _ | 0.47        |
| hellaswag     | 0       | acc_norm   | 35.18   | _ | 0.48        |
| openbookqa    | 0       | acc        | 17.8    | _ | 1.71        |
| openbookqa    | 0       | acc_norm   | 29.8    | _ | 2.05        |
| piqa          | 0       | acc        | 54.46   | _ | 1.16        |
| piqa          | 0       | acc_norm   | 54.57   | _ | 1.16        |
| winogrande    | 0       | acc        | 48.30   | _ | 1.40        |
Average: 32.00


TruthfulQA

| Task                             | Version | Metric | Value | Std Err |
|----------------------------------|---------|--------|--------|----------|
| truthfulqa\_mc                   | 1       | mc1    | 30.11  | 1.61    |
| truthfulqa\_mc                   | 1       | mc2    | 47.69  | 1.61    |
Average: 38.90


# Openllm Benchmark

|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |48.12|±  |  1.46|
|             |       |acc_norm|51.27|±  |  1.46|
|hellaswag    |      0|acc     |55.4 |±  |  0.49|
|             |       |acc_norm|71.92|±  |  0.42|
|gsm8k        |      0|acc     |29.87|±  |  1.2 |
|winogrande   |      0|acc     |68.19|±  |  1.3 |
|mmlu         |      0|acc     |53.62  |±|  0.6 |

Average: 73.5%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |30.23|±  |  1.60|
|             |       |mc2   |47.17|±  |  1.63|



### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000


### 📝 Axolotl Configuration

```yaml
base_model: google/gemma-7b-it
model_type: GemmaForCausalLM
tokenizer_type: GemmaTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

rl: dpo
chat_template: chatml
datasets:
  - path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
    split: train
    type: chatml.intel
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out

adapter: qlora
lora_model_dir:

sequence_len: 1800
sample_packing: false
pad_to_sequence_len: false

lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:

wandb_project: gemma
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 5e-7

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false

warmup_steps: 100
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 1000
max_steps: 1000
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- axolotl: 0.4.0

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)