abideen commited on
Commit
4f22134
1 Parent(s): d806ad6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +233 -170
README.md CHANGED
@@ -1,199 +1,262 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
 
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ base_model: google/gemma-7b-it
4
+ tags:
5
+ - generated_from_trainer
6
+ - axolotl
7
+ - gemma
8
+ - instruct
9
+ - finetune
10
+ - chatml
11
+ - gpt4
12
+ - synthetic data
13
+ - distillation
14
+ model-index:
15
+ - name: gemma-7b-openhermes
16
+ results: []
17
+ datasets:
18
+ - mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
19
+ language:
20
+ - en
21
  library_name: transformers
22
+ pipeline_tag: text-generation
23
  ---
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
 
27
+ # gemma-7b-openhermes
28
 
 
29
 
30
 
31
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/mh-NUO_aNbQpD_NAuFv7g.jpeg)
32
 
33
+ gemma-7b-openhermes is a variant of the Gemma 7B language model, which has been further fine-tuned on the OpenHermes-2.5 preference dataset
34
+ using QLoRA.
35
 
 
36
 
37
+ * [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)
38
+ * [mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha)
39
 
40
+ </details><br>
41
 
42
+ ## Usage
 
 
 
 
 
 
43
 
44
+ ### Chat Template
45
 
46
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
47
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
48
 
49
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
 
 
50
 
51
+ ```py
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+ import transformers
54
+ import torch
55
 
56
+ model_id = "abideen/gemma-7b-openhermes"
57
+ dtype = torch.bfloat16
58
 
59
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
60
+ model = AutoModelForCausalLM.from_pretrained(
61
+ model_id,
62
+ device_map="cuda",
63
+ torch_dtype=dtype,
64
+ )
65
 
66
+ chat = [{ "role": "user", "content": "What is a Language Model?" }]
67
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
68
+ ```
69
 
70
+ After the prompt is ready, generation can be performed like this:
71
 
72
+ ```py
73
+ inputs = tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")
74
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=250)
75
+ print(tokenizer.decode(outputs[0]))
76
+ ```
77
 
78
+ ### Inputs and outputs
79
 
80
+ * **Input:** Text string, such as a question, a prompt, or a document to be
81
+ summarized.
82
+ * **Output:** Generated English-language text in response to the input, such
83
+ as an answer to a question, or a summary of a document.
84
 
85
+ ## 🏆 Evaluation results
86
 
87
+ # Nous Benchmark
88
 
89
+ Agieval
90
 
91
+ | Task | Version | Metric | Value | | StdErr |
92
+ |-------------------------------------------|---------|--------|-------|---|---------|
93
+ | agieval\_aqua\_rat | 0 | acc | 24.80 | _ | 2.72 |
94
+ | agieval\_aqua\_rat | 0 | acc\_norm | 24.80 | _ | 2.72 |
95
+ | agieval\_logiqa\_en | 0 | acc | 20.89 | _ | 1.59 |
96
+ | agieval\_logiqa\_en | 0 | acc\_norm | 23.35 | _ | 1.66 |
97
+ | agieval\_lsat\_ar | 0 | acc | 21.74 | _ | 2.73 |
98
+ | agieval\_lsat\_ar | 0 | acc\_norm | 20.43 | _ | 2.66 |
99
+ | agieval\_lsat\_lr | 0 | acc | 15.49 | _ | 1.60 |
100
+ | agieval\_lsat\_lr | 0 | acc\_norm | 20.59 | _ | 1.79 |
101
+ | agieval\_lsat\_rc | 0 | acc | 17.10 | _ | 2.30 |
102
+ | agieval\_lsat\_rc | 0 | acc\_norm | 17.84 | _ | 2.34 |
103
+ | agieval\_sat\_en | 0 | acc | 29.61 | _ | 3.19 |
104
+ | agieval\_sat\_en | 0 | acc\_norm | 29.61 | _ | 3.19 |
105
+ | agieval\_sat\_en\_without\_passage | 0 | acc | 26.21 | _ | 3.07 |
106
+ | agieval\_sat\_en\_without\_passage | 0 | acc\_norm | 24.76 | _ | 3.01 |
107
+ | agieval\_sat\_math | 0 | acc | 22.73 | _ | 2.83 |
108
+ | agieval\_sat\_math | 0 | acc\_norm | 22.73 | _ | 2.83 |
109
+ Average: 22.29
110
 
111
+ GPT4ALL
112
 
113
+ | Task | Version | Metric | Value | | StdErr |
114
+ |---------------|---------|------------|---------|---|-------------|
115
+ | arc_challenge | 0 | acc | 20.14 | _ | 1.17 |
116
+ | arc_challenge | 0 | acc_norm | 22.87 | _ | 1.23 |
117
+ | arc_easy | 0 | acc | 32.37 | _ | 0.96 |
118
+ | arc_easy | 0 | acc_norm | 31.61 | _ | 0.95 |
119
+ | boolq | 1 | acc | 45.78 | _ | 0.87 |
120
+ | hellaswag | 0 | acc | 32.03 | _ | 0.47 |
121
+ | hellaswag | 0 | acc_norm | 35.18 | _ | 0.48 |
122
+ | openbookqa | 0 | acc | 17.8 | _ | 1.71 |
123
+ | openbookqa | 0 | acc_norm | 29.8 | _ | 2.05 |
124
+ | piqa | 0 | acc | 54.46 | _ | 1.16 |
125
+ | piqa | 0 | acc_norm | 54.57 | _ | 1.16 |
126
+ | winogrande | 0 | acc | 48.30 | _ | 1.40 |
127
+ Average: 32.00
128
+
129
+
130
+ TruthfulQA
131
+
132
+ | Task | Version | Metric | Value | Std Err |
133
+ |----------------------------------|---------|--------|--------|----------|
134
+ | truthfulqa\_mc | 1 | mc1 | 30.11 | 1.61 |
135
+ | truthfulqa\_mc | 1 | mc2 | 47.69 | 1.61 |
136
+ Average: 38.90
137
+
138
+
139
+ # Openllm Benchmark
140
+
141
+ | Task |Version| Metric |Value| |Stderr|
142
+ |-------------|------:|--------|----:|---|-----:|
143
+ |arc_challenge| 0|acc |48.12|± | 1.46|
144
+ | | |acc_norm|51.27|± | 1.46|
145
+ |hellaswag | 0|acc |55.4 |± | 0.49|
146
+ | | |acc_norm|71.92|± | 0.42|
147
+ |gsm8k | 0|acc |29.87|± | 1.2 |
148
+ |winogrande | 0|acc |68.19|± | 1.3 |
149
+ |mmlu | 0|acc |53.62 |±| 0.6 |
150
+
151
+ Average: 73.5%
152
+
153
+ ### TruthfulQA
154
+ | Task |Version|Metric|Value| |Stderr|
155
+ |-------------|------:|------|----:|---|-----:|
156
+ |truthfulqa_mc| 1|mc1 |30.23|± | 1.60|
157
+ | | |mc2 |47.17|± | 1.63|
158
+
159
+
160
+
161
+ ### Training hyperparameters
162
+
163
+ The following hyperparameters were used during training:
164
+ - learning_rate: 5e-07
165
+ - train_batch_size: 1
166
+ - eval_batch_size: 8
167
+ - seed: 42
168
+ - gradient_accumulation_steps: 8
169
+ - total_train_batch_size: 8
170
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
171
+ - lr_scheduler_type: cosine
172
+ - lr_scheduler_warmup_steps: 100
173
+ - training_steps: 1000
174
+
175
+
176
+ ### 📝 Axolotl Configuration
177
+
178
+ ```yaml
179
+ base_model: google/gemma-7b-it
180
+ model_type: GemmaForCausalLM
181
+ tokenizer_type: GemmaTokenizer
182
+ trust_remote_code: true
183
+
184
+ load_in_8bit: false
185
+ load_in_4bit: true
186
+ strict: false
187
+
188
+ rl: dpo
189
+ chat_template: chatml
190
+ datasets:
191
+ - path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
192
+ split: train
193
+ type: chatml.intel
194
+ dataset_prepared_path:
195
+ val_set_size: 0.01
196
+ output_dir: ./out
197
+
198
+ adapter: qlora
199
+ lora_model_dir:
200
+
201
+ sequence_len: 1800
202
+ sample_packing: false
203
+ pad_to_sequence_len: false
204
+
205
+ lora_r: 16
206
+ lora_alpha: 16
207
+ lora_dropout: 0.05
208
+ lora_target_linear: true
209
+ lora_fan_in_fan_out:
210
+ lora_target_modules:
211
+
212
+ wandb_project: gemma
213
+ wandb_entity:
214
+ wandb_watch:
215
+ wandb_name:
216
+ wandb_log_model:
217
+
218
+ gradient_accumulation_steps: 8
219
+ micro_batch_size: 1
220
+ num_epochs: 1
221
+ optimizer: paged_adamw_32bit
222
+ lr_scheduler: cosine
223
+ learning_rate: 5e-7
224
+
225
+ train_on_inputs: false
226
+ group_by_length: false
227
+ bf16: true
228
+ fp16: false
229
+ tf32: true
230
+
231
+ gradient_checkpointing: true
232
+ early_stopping_patience:
233
+ resume_from_checkpoint:
234
+ local_rank:
235
+ logging_steps: 1
236
+ xformers_attention:
237
+ flash_attention: false
238
+
239
+ warmup_steps: 100
240
+ evals_per_epoch: 1
241
+ eval_table_size:
242
+ eval_table_max_new_tokens: 128
243
+ save_steps: 1000
244
+ max_steps: 1000
245
+ debug:
246
+ deepspeed:
247
+ weight_decay: 0.0
248
+ fsdp:
249
+ fsdp_config:
250
+ special_tokens:
251
+ ```
252
+
253
+
254
+ ### Framework versions
255
+
256
+ - Transformers 4.39.0.dev0
257
+ - Pytorch 2.1.2+cu118
258
+ - Datasets 2.17.0
259
+ - Tokenizers 0.15.0
260
+ - axolotl: 0.4.0
261
+
262
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)