|
|
|
--- |
|
|
|
base_model: meta-llama/Llama-3.2-1B-Instruct |
|
language: |
|
- en |
|
datasets: |
|
- KingNish/reasoning-base-20k |
|
license: llama3.2 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
- sft |
|
- reasoning |
|
- llama-3 |
|
|
|
--- |
|
|
|
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/Reasoning-Llama-1b-v0.1-GGUF |
|
This is quantized version of [KingNish/Reasoning-Llama-1b-v0.1](https://huggingface.co/KingNish/Reasoning-Llama-1b-v0.1) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
|
|
# Model Dexcription |
|
|
|
It's First iteration of this model. For testing purpose its just trained on 10k rows. |
|
It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1. |
|
It do reasoning separately (Just like o1), no tags (like reflection). |
|
Below is inference code. |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
MAX_REASONING_TOKENS = 1024 |
|
MAX_RESPONSE_TOKENS = 512 |
|
|
|
model_name = "KingNish/Reasoning-Llama-1b-v0.1" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Which is greater 9.9 or 9.11 ??" |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
# Generate reasoning |
|
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) |
|
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) |
|
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) |
|
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
# print("REASONING: " + reasoning_output) |
|
|
|
# Generate answer |
|
messages.append({"role": "reasoning", "content": reasoning_output}) |
|
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) |
|
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) |
|
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
print("ANSWER: " + response_output) |
|
``` |
|
|
|
- **Trained by:** [Nishith Jain](https://huggingface.co/KingNish) |
|
- **License:** llama3.2 |
|
- **Finetuned from model :** [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) |
|
- **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k) |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|