aashish1904's picture
Upload README.md with huggingface_hub
472589e verified
metadata
language:
  - en
license: llama3.1
tags:
  - fireplace
  - fireplace-2
  - valiant
  - valiant-labs
  - llama
  - llama-3.1
  - llama-3.1-instruct
  - llama-3.1-instruct-8b
  - llama-3
  - llama-3-instruct
  - llama-3-instruct-8b
  - 8b
  - function-calling
  - sql
  - database
  - data-visualization
  - matplotlib
  - json
  - conversational
  - chat
  - instruct
pipeline_tag: text-generation
model_type: llama
model-index:
  - name: Llama3.1-8B-Fireplace2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 54.83
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 24.07
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 5.82
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 5.15
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.38
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 15.63
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
          name: Open LLM Leaderboard

QuantFactory/Llama3.1-8B-Fireplace2-GGUF

This is quantized version of ValiantLabs/Llama3.1-8B-Fireplace2 created using llama.cpp

Original Model Card

image/jpeg

Fireplace 2 is a chat model, adding helpful structured outputs to Llama 3.1 8b Instruct.

  • an expansion pack of supplementary outputs - request them at will within your chat:
    • Inline function calls
    • SQL queries
    • JSON objects
    • Data visualization with matplotlib
  • Mix normal chat and structured outputs within the same conversation.
  • Fireplace 2 supplements the existing strengths of Llama 3.1, providing inline capabilities within the Llama 3 Instruct format.

Version

This is the 2024-07-23 release of Fireplace 2 for Llama 3.1 8b.

We're excited to bring further upgrades and releases to Fireplace 2 in the future.

Help us and recommend Fireplace 2 to your friends!

Prompting Guide

Fireplace uses the Llama 3.1 Instruct prompt format. The example script below can be used as a starting point for general chat with Llama 3.1 and also includes the different special tokens used for Fireplace 2's added features:

import transformers import torch

model_id = "ValiantLabs/Llama3.1-8B-Fireplace2"

pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", )

messages = [ {"role": "system", "content": "You are Fireplace, an expert technical assistant."}, {"role": "user", "content": "Hi, can you explain local area networking to me?"}, #general Llama 3.1 chat #{"role": "user", "content": "I have the following SQL table: employees (job_id VARCHAR, salary INTEGER)\n\nCan you find all employees with a salary above $75000?<|request_sql|>"}, #for SQL query #{"role": "user", "content": "{""name"": ""get_news_headlines"",""description"": ""Get the latest news headlines"",""parameters"": {""type"": ""object"",""properties"": {""country"": {""type"": ""string"",""description"": ""The country for which news headlines are to be retrieved""}},""required"": [""country""]}}\n\nHi, can you get me the latest news headlines for the United States?<|request_function_call|>"}, # for function call #{"role": "user", "content": "Show me an example of a histogram with a fixed bin size. Use attractive colors.<|request_matplotlib|>"}, #for data visualization #{"role": "user", "content": "Can you define the word 'presence' for me, thanks!<|request_json|>"}, #for JSON output ]

outputs = pipeline( messages, max_new_tokens=512, ) print(outputs[0]["generated_text"][-1])

While Fireplace 2 is trained to minimize incorrect structured outputs, they can still occur occasionally. Production uses of Fireplace 2 should verify the structure of all model outputs and remove any unneeded components of the output.

For handling of function call responses, use the Llama 3.1 Instruct tool response style.

Special Tokens

Fireplace 2 utilizes special tokens applied to the Llama 3.1 tokenizer:

  • <|request_json|>
  • <|start_json|>
  • <|end_json|>
  • <|request_sql|>
  • <|start_sql|>
  • <|end_sql|>
  • <|request_matplotlib|>
  • <|start_matplotlib|>
  • <|end_matplotlib|>
  • <|request_function_call|>
  • <|start_function_call|>
  • <|end_function_call|>

These are supplemental to the existing special tokens used by Llama 3.1, such as <|python_tag|> and <|start_header_id|>. Fireplace 2 has been trained using the Llama 3.1 Instruct chat structure, with new special tokens added within the conversation.

The 'request' tokens are used by the user to request a specific type of structured output. They should be appended to the end of the user's message and can be alternated with normal chat responses throughout the conversation.

The Model

Fireplace 2 is built on top of Llama 3.1 8b Instruct.

This version of Fireplace 2 uses data from the following datasets:

Additional capabilities will be added to future releases.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 18.31
IFEval (0-Shot) 54.83
BBH (3-Shot) 24.07
MATH Lvl 5 (4-Shot) 5.82
GPQA (0-shot) 5.15
MuSR (0-shot) 4.38
MMLU-PRO (5-shot) 15.63

image/jpeg

Fireplace 2 is created by Valiant Labs.

Check out our HuggingFace page for Shining Valiant 2 and our other models!

Follow us on X for updates on our models!

We care about open source. For everyone to use.

We encourage others to finetune further from our models.