See axolotl config
axolotl version: 0.4.1
base_model: mistralai/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
datasets:
- path: /home/austin/disk1/summaries_fixed.jsonl
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora_outputs
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: summarization-qlora
wandb_entity:
wandb_watch:
wandb_name: actual_run1
wandb_log_model:
#unsloth_cross_entropy_loss: true
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention: false
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 25
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed: ./deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
# - full_shard
# - auto_wrap
fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_activation_checkpointing: true
# fsdp_sync_module_states: true
# fsdp_offload_params: false
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: false
# fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
special_tokens:
pad_token: </s>
qlora_outputs
This model is a fine-tuned version of mistralai/Mistral-Nemo-Base-2407 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5617
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0177 | 0.0014 | 1 | 1.6514 |
1.6259 | 0.2507 | 177 | 1.2032 |
1.4232 | 0.5014 | 354 | 1.1897 |
1.6835 | 0.7521 | 531 | 1.1985 |
1.6514 | 1.0028 | 708 | 1.1874 |
1.4538 | 1.2365 | 885 | 1.2166 |
1.2421 | 1.4873 | 1062 | 1.2224 |
1.2844 | 1.7380 | 1239 | 1.2330 |
1.4152 | 1.9887 | 1416 | 1.2345 |
1.1668 | 2.2252 | 1593 | 1.3476 |
1.1249 | 2.4759 | 1770 | 1.3608 |
0.921 | 2.7266 | 1947 | 1.3793 |
0.7824 | 2.9773 | 2124 | 1.3906 |
1.1759 | 3.2040 | 2301 | 1.5438 |
0.6625 | 3.4547 | 2478 | 1.5644 |
0.8959 | 3.7054 | 2655 | 1.5617 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for PygTesting/sum_qlora_4pochs
Base model
mistralai/Mistral-Nemo-Base-2407