File size: 14,274 Bytes
536b1bb
 
3513fce
 
 
536b1bb
3513fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
---
license: gpl-3.0
pipeline_tag: graph-ml
tags:
- code
---
---

import contextlib
import os
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import requests
from torchvision import datasets, transforms
import psutil
import time
import subprocess
import onnxruntime as ort
import matplotlib.pyplot as plt
import numpy as np
import numexpr as ne
  
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("janpase97/codeformer-pretrained")

model = AutoModelForSeq2SeqLM.from_pretrained("janpase97/codeformer-pretrained") 

def check_graphics_api(target_app_name):
    graphics_api = None

    with contextlib.suppress(subprocess.CalledProcessError):
        output = subprocess.check_output(['tasklist', '/FI', f'imagename eq {target_app_name}', '/M']).decode('utf-8')
        if "opengl32.dll" in output:
            graphics_api = "OpenGL"
        elif "d3d11.dll" in output:
            graphics_api = "DirectX11"
        elif "d3d12.dll" in output:
            graphics_api = "DirectX12"
        elif "vulkan" in output:
            graphics_api = "VULKAN"       
    return graphics_api


# Get the target application's process object
def get_target_app_process(target_app_name):
    return next(
        (
            process
            for process in psutil.process_iter(['name'])
            if process.info['name'] == target_app_name
        ),
        None,
    )

# Attach the AI to the application's process by PID
def attach_ai_to_app_pid(target_app_process):
    if target_app_process is not None:
        print(f"AI is attached to the application's process with PID: {target_app_process.pid}")
        return True
    else:
        print("Could not find the target application's process to attach the AI.")
        return False

# Check if the targeted application is running
def is_target_app_running(target_app_name):
    return any(
        process.info['name'] == target_app_name
        for process in psutil.process_iter(['name'])
    )

# Create the directory if it doesn't exist
directory = r"G:\Epic Games\GTAV\GTA5_AI\trained_models"
if not os.path.exists(directory):
    os.makedirs(directory)

# Define the neural network model
class NanoCircuit(nn.Module):
    def __init__(self):
        super(NanoCircuit, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 784)  # Reshape the input from (batch_size, 28, 28) to (batch_size, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# Set the device to GPU if available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load the MNIST dataset
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)


# Initialize the model and move it to the GPU
model = NanoCircuit().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

# Train the model on the GPU with a data cap
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
    data_processed = 0
    data_cap_bytes = data_cap_gb * (1024 ** 3)
    epoch = 0

    while data_processed < data_cap_bytes:
        running_loss = 0.0
        for i, data in enumerate(data_loader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # Update the amount of data processed
            data_processed += inputs.nelement() * inputs.element_size()
            if data_processed >= data_cap_bytes:
                break

            optimizer.zero_grad()

            outputs = model(inputs.view(-1, 28 * 28))
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

        epoch += 1
        print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
        print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")

    return model


# Save the updated model as a .onnx file
def save_model(model, filepath):
    dummy_input = torch.randn(1, 1, 28, 28).to(device)
    torch.onnx.export(model, dummy_input, filepath, input_names=['input'], output_names=['output'], opset_version=11)


# Train the model with a 1 GB data cap
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=50)
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))

target_app_name = "GTA5_TRAINED.exe"
save_interval_seconds = 5 * 60
application_was_running = False
while True:
    if is_target_app_running(target_app_name):
        print("Target application is running. Training and updating the model...")
        trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=.1)
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        application_was_running = True
    elif application_was_running:
        print("Target application has exited. Saving the model...")
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        print("Finished training and saved the model.")
        break
    else:
        print("Target application is not running. Waiting to start training and updating the model...")

    time.sleep(save_interval_seconds)
    
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
    data_processed = 0
    data_cap_bytes = data_cap_gb * (1024 ** 3)
    epoch = 0

    while data_processed < data_cap_bytes:
        running_loss = 0.0
        for i, data in enumerate(data_loader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # Update the amount of data processed
            data_processed += inputs.nelement() * inputs.element_size()
            if data_processed >= data_cap_bytes:
                break

            optimizer.zero_grad()

            # Compute the outputs and loss using numexpr
            outputs = model(inputs.view(-1, 28 * 28))
            outputs = outputs.cpu().detach().numpy()
            labels = labels.cpu().detach().numpy()
            loss = ne.evaluate("sum(-log(outputs[arange(outputs.shape[0]), labels]))") / len(labels)

            # Backpropagate and update the model parameters
            ne.evaluate("loss", out=loss)
            grad_outputs = np.ones_like(outputs)
            grad_outputs[np.arange(grad_outputs.shape[0]), labels] = -1
            grad_outputs /= len(labels)
            grad_outputs = ne.evaluate("grad_outputs * loss_grad")
            grad_outputs = torch.from_numpy(grad_outputs).to(device)
            outputs = torch.from_numpy(outputs).to(device)
            loss.backward(grad_outputs)
            optimizer.step()

            running_loss += loss.item()

        epoch += 1
        print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
        print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")

    return model

# Train the model with a 10 GB data cap
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))

target_app_name = "GTA5.exe"
save_interval_seconds = 5 * 60
application_was_running = False
while True:
    if is_target_app_running(target_app_name):
        print("Target application is running. Training and updating the model...")
        trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        application_was_running = True
    elif application_was_running:
        print("Target application has exited. Saving the model...")
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        print("Finished training and saved the model.")
        break
    else:
        print("Target application is not running. Waiting to start training and updating the model...")

    time.sleep(save_interval_seconds)

def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
    data_processed = 0
    data_cap_bytes = data_cap_gb * (1024 ** 3)
    epoch = 0

    while data_processed < data_cap_bytes:
        running_loss = 0.0
        for i, data in enumerate(data_loader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # Update the amount of data processed
            data_processed += inputs.nelement() * inputs.element_size()
            if data_processed >= data_cap_bytes:
                break

            optimizer.zero_grad()

            # Compute the outputs and loss using numexpr
            outputs = model(inputs.view(-1, 28 * 28))
            outputs = outputs.cpu().detach().numpy()
            labels = labels.cpu().detach().numpy()
            loss = ne.evaluate("sum(-log(outputs[arange(outputs.shape[0]), labels]))") / len(labels)

            # Backpropagate and update the model parameters
            ne.evaluate("loss", out=loss)
            grad_outputs = np.ones_like(outputs)
            grad_outputs[np.arange(grad_outputs.shape[0]), labels] = -1
            grad_outputs /= len(labels)
            grad_outputs = ne.evaluate("grad_outputs * loss_grad")
            grad_outputs = torch.from_numpy(grad_outputs).to(device)
            outputs = torch.from_numpy(outputs).to(device)
            loss.backward(grad_outputs)
            optimizer.step()

            running_loss += loss.item()

        epoch += 1
        print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
        print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")

    return model

target_app_name = "GTA5.exe"
save_interval_seconds = 1 * 60
application_was_running = False

while True:
    if is_target_app_running(target_app_name):
        print("Target application is running. Training and updating the model...")
        trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=10)
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        application_was_running = True
    elif application_was_running:
        print("Target application has exited. Saving the model...")
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        print("Finished training and saved the model.")
        break
    else:
        start_time = time.time()
    print("Target application is not running. Waiting to detect the graphics API...")
    while (time.time() - start_time) < 5:
        if is_target_app_running(target_app_name):
            if graphics_api := check_graphics_api(target_app_name):
                print(f"Detected {graphics_api} in the target application.")
                break
            else:
                print("Could not detect the graphics API used in the target application.")
        time.sleep(1)

    if not is_target_app_running(target_app_name):
        print("Target application not detected in 5 seconds. Shutting down the AI.")
        break
        

while True:
    if is_target_app_running(target_app_name):
        if graphics_api := check_graphics_api(target_app_name):
            print(f"Detected {graphics_api} in the target application.")
        else:
            print("Could not detect the graphics API used in the target application.")
    else:
        start_time = time.time()
        print("Target application is not running. Waiting to start training and updating the model...")
        while (time.time() - start_time) < 5:
            if is_target_app_running(target_app_name):
                print(f"Detected {graphics_api} in the target application.")
                break
            time.sleep(1)

        if not is_target_app_running(target_app_name):
            print("Target application not detected in 5 seconds. Shutting down the AI.")
            break
        
        
#Generate some random data for the boxplots
np.random.seed(0)
original_data = np.random.normal(0, 1, 100)
trained_data = np.random.normal(0.5, 1, 100)

while True:
    if is_target_app_running(target_app_name):
        print("Target application is running. Training and updating the model...")
        trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=10)
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))

        # Create a box plot of the original and trained data
        plt.figure()
        plt.boxplot([original_data, trained_data], labels=["Original Data", "Trained Data"])
        plt.title("Boxplot of Original and Trained Data")
        plt.ylabel("Values")
        plt.show()

        # Save the box plot as an image
        plt.savefig(r"G:\Epic Games\GTAV\GTA5_AI\Plot Box Comparison\boxplot_comparison.png")

        application_was_running = True
    elif application_was_running:
        print("Target application has exited. Saving the model...")
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        print("Finished training and saved the model.")
        break
    else:
        start_time = time.time()
        print("Target application is not running. Waiting to detect the graphics API...")
        while (time.time() - start_time) < 5:
            if is_target_app_running(target_app_name):
                if graphics_api := check_graphics_api(target_app_name):
                    print(f"Detected {graphics_api} in the target application.")
                    break
                else:
                    print("Could not detect the graphics API used in the target application.")
            time.sleep(1)

        if not is_target_app_running(target_app_name):
            print("Target application not detected in 5 seconds. Shutting down the AI.")
            break