PromptKing
commited on
Commit
•
3513fce
1
Parent(s):
536b1bb
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,374 @@
|
|
1 |
---
|
2 |
license: gpl-3.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: gpl-3.0
|
3 |
+
pipeline_tag: graph-ml
|
4 |
+
tags:
|
5 |
+
- code
|
6 |
---
|
7 |
+
---
|
8 |
+
license: gpl-3.0
|
9 |
+
pipeline_tag: graph-ml
|
10 |
+
|
11 |
+
|
12 |
+
import contextlib
|
13 |
+
import os
|
14 |
+
from matplotlib import pyplot as plt
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
import torch.optim as optim
|
19 |
+
import requests
|
20 |
+
from torchvision import datasets, transforms
|
21 |
+
import psutil
|
22 |
+
import time
|
23 |
+
import subprocess
|
24 |
+
import onnxruntime as ort
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
+
import numpy as np
|
27 |
+
import numexpr as ne
|
28 |
+
|
29 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained("janpase97/codeformer-pretrained")
|
32 |
+
|
33 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("janpase97/codeformer-pretrained")
|
34 |
+
|
35 |
+
def check_graphics_api(target_app_name):
|
36 |
+
graphics_api = None
|
37 |
+
|
38 |
+
with contextlib.suppress(subprocess.CalledProcessError):
|
39 |
+
output = subprocess.check_output(['tasklist', '/FI', f'imagename eq {target_app_name}', '/M']).decode('utf-8')
|
40 |
+
if "opengl32.dll" in output:
|
41 |
+
graphics_api = "OpenGL"
|
42 |
+
elif "d3d11.dll" in output:
|
43 |
+
graphics_api = "DirectX11"
|
44 |
+
elif "d3d12.dll" in output:
|
45 |
+
graphics_api = "DirectX12"
|
46 |
+
elif "vulkan" in output:
|
47 |
+
graphics_api = "VULKAN"
|
48 |
+
return graphics_api
|
49 |
+
|
50 |
+
|
51 |
+
# Get the target application's process object
|
52 |
+
def get_target_app_process(target_app_name):
|
53 |
+
return next(
|
54 |
+
(
|
55 |
+
process
|
56 |
+
for process in psutil.process_iter(['name'])
|
57 |
+
if process.info['name'] == target_app_name
|
58 |
+
),
|
59 |
+
None,
|
60 |
+
)
|
61 |
+
|
62 |
+
# Attach the AI to the application's process by PID
|
63 |
+
def attach_ai_to_app_pid(target_app_process):
|
64 |
+
if target_app_process is not None:
|
65 |
+
print(f"AI is attached to the application's process with PID: {target_app_process.pid}")
|
66 |
+
return True
|
67 |
+
else:
|
68 |
+
print("Could not find the target application's process to attach the AI.")
|
69 |
+
return False
|
70 |
+
|
71 |
+
# Check if the targeted application is running
|
72 |
+
def is_target_app_running(target_app_name):
|
73 |
+
return any(
|
74 |
+
process.info['name'] == target_app_name
|
75 |
+
for process in psutil.process_iter(['name'])
|
76 |
+
)
|
77 |
+
|
78 |
+
# Create the directory if it doesn't exist
|
79 |
+
directory = r"G:\Epic Games\GTAV\GTA5_AI\trained_models"
|
80 |
+
if not os.path.exists(directory):
|
81 |
+
os.makedirs(directory)
|
82 |
+
|
83 |
+
# Define the neural network model
|
84 |
+
class NanoCircuit(nn.Module):
|
85 |
+
def __init__(self):
|
86 |
+
super(NanoCircuit, self).__init__()
|
87 |
+
self.fc1 = nn.Linear(784, 128)
|
88 |
+
self.fc2 = nn.Linear(128, 10)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
x = x.view(-1, 784) # Reshape the input from (batch_size, 28, 28) to (batch_size, 784)
|
92 |
+
x = torch.relu(self.fc1(x))
|
93 |
+
x = self.fc2(x)
|
94 |
+
return x
|
95 |
+
|
96 |
+
# Set the device to GPU if available
|
97 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
98 |
+
|
99 |
+
# Load the MNIST dataset
|
100 |
+
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
|
101 |
+
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
102 |
+
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
103 |
+
|
104 |
+
|
105 |
+
# Initialize the model and move it to the GPU
|
106 |
+
model = NanoCircuit().to(device)
|
107 |
+
criterion = nn.CrossEntropyLoss()
|
108 |
+
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
|
109 |
+
|
110 |
+
# Train the model on the GPU with a data cap
|
111 |
+
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
112 |
+
data_processed = 0
|
113 |
+
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
114 |
+
epoch = 0
|
115 |
+
|
116 |
+
while data_processed < data_cap_bytes:
|
117 |
+
running_loss = 0.0
|
118 |
+
for i, data in enumerate(data_loader, 0):
|
119 |
+
inputs, labels = data
|
120 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
121 |
+
|
122 |
+
# Update the amount of data processed
|
123 |
+
data_processed += inputs.nelement() * inputs.element_size()
|
124 |
+
if data_processed >= data_cap_bytes:
|
125 |
+
break
|
126 |
+
|
127 |
+
optimizer.zero_grad()
|
128 |
+
|
129 |
+
outputs = model(inputs.view(-1, 28 * 28))
|
130 |
+
loss = criterion(outputs, labels)
|
131 |
+
loss.backward()
|
132 |
+
optimizer.step()
|
133 |
+
|
134 |
+
running_loss += loss.item()
|
135 |
+
|
136 |
+
epoch += 1
|
137 |
+
print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
|
138 |
+
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
139 |
+
|
140 |
+
return model
|
141 |
+
|
142 |
+
|
143 |
+
# Save the updated model as a .onnx file
|
144 |
+
def save_model(model, filepath):
|
145 |
+
dummy_input = torch.randn(1, 1, 28, 28).to(device)
|
146 |
+
torch.onnx.export(model, dummy_input, filepath, input_names=['input'], output_names=['output'], opset_version=11)
|
147 |
+
|
148 |
+
|
149 |
+
# Train the model with a 1 GB data cap
|
150 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=50)
|
151 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
152 |
+
|
153 |
+
target_app_name = "GTA5_TRAINED.exe"
|
154 |
+
save_interval_seconds = 5 * 60
|
155 |
+
application_was_running = False
|
156 |
+
while True:
|
157 |
+
if is_target_app_running(target_app_name):
|
158 |
+
print("Target application is running. Training and updating the model...")
|
159 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=.1)
|
160 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
161 |
+
application_was_running = True
|
162 |
+
elif application_was_running:
|
163 |
+
print("Target application has exited. Saving the model...")
|
164 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
165 |
+
print("Finished training and saved the model.")
|
166 |
+
break
|
167 |
+
else:
|
168 |
+
print("Target application is not running. Waiting to start training and updating the model...")
|
169 |
+
|
170 |
+
time.sleep(save_interval_seconds)
|
171 |
+
|
172 |
+
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
173 |
+
data_processed = 0
|
174 |
+
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
175 |
+
epoch = 0
|
176 |
+
|
177 |
+
while data_processed < data_cap_bytes:
|
178 |
+
running_loss = 0.0
|
179 |
+
for i, data in enumerate(data_loader, 0):
|
180 |
+
inputs, labels = data
|
181 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
182 |
+
|
183 |
+
# Update the amount of data processed
|
184 |
+
data_processed += inputs.nelement() * inputs.element_size()
|
185 |
+
if data_processed >= data_cap_bytes:
|
186 |
+
break
|
187 |
+
|
188 |
+
optimizer.zero_grad()
|
189 |
+
|
190 |
+
# Compute the outputs and loss using numexpr
|
191 |
+
outputs = model(inputs.view(-1, 28 * 28))
|
192 |
+
outputs = outputs.cpu().detach().numpy()
|
193 |
+
labels = labels.cpu().detach().numpy()
|
194 |
+
loss = ne.evaluate("sum(-log(outputs[arange(outputs.shape[0]), labels]))") / len(labels)
|
195 |
+
|
196 |
+
# Backpropagate and update the model parameters
|
197 |
+
ne.evaluate("loss", out=loss)
|
198 |
+
grad_outputs = np.ones_like(outputs)
|
199 |
+
grad_outputs[np.arange(grad_outputs.shape[0]), labels] = -1
|
200 |
+
grad_outputs /= len(labels)
|
201 |
+
grad_outputs = ne.evaluate("grad_outputs * loss_grad")
|
202 |
+
grad_outputs = torch.from_numpy(grad_outputs).to(device)
|
203 |
+
outputs = torch.from_numpy(outputs).to(device)
|
204 |
+
loss.backward(grad_outputs)
|
205 |
+
optimizer.step()
|
206 |
+
|
207 |
+
running_loss += loss.item()
|
208 |
+
|
209 |
+
epoch += 1
|
210 |
+
print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
|
211 |
+
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
212 |
+
|
213 |
+
return model
|
214 |
+
|
215 |
+
# Train the model with a 10 GB data cap
|
216 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
|
217 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
218 |
+
|
219 |
+
target_app_name = "GTA5.exe"
|
220 |
+
save_interval_seconds = 5 * 60
|
221 |
+
application_was_running = False
|
222 |
+
while True:
|
223 |
+
if is_target_app_running(target_app_name):
|
224 |
+
print("Target application is running. Training and updating the model...")
|
225 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
|
226 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
227 |
+
application_was_running = True
|
228 |
+
elif application_was_running:
|
229 |
+
print("Target application has exited. Saving the model...")
|
230 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
231 |
+
print("Finished training and saved the model.")
|
232 |
+
break
|
233 |
+
else:
|
234 |
+
print("Target application is not running. Waiting to start training and updating the model...")
|
235 |
+
|
236 |
+
time.sleep(save_interval_seconds)
|
237 |
+
|
238 |
+
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
239 |
+
data_processed = 0
|
240 |
+
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
241 |
+
epoch = 0
|
242 |
+
|
243 |
+
while data_processed < data_cap_bytes:
|
244 |
+
running_loss = 0.0
|
245 |
+
for i, data in enumerate(data_loader, 0):
|
246 |
+
inputs, labels = data
|
247 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
248 |
+
|
249 |
+
# Update the amount of data processed
|
250 |
+
data_processed += inputs.nelement() * inputs.element_size()
|
251 |
+
if data_processed >= data_cap_bytes:
|
252 |
+
break
|
253 |
+
|
254 |
+
optimizer.zero_grad()
|
255 |
+
|
256 |
+
# Compute the outputs and loss using numexpr
|
257 |
+
outputs = model(inputs.view(-1, 28 * 28))
|
258 |
+
outputs = outputs.cpu().detach().numpy()
|
259 |
+
labels = labels.cpu().detach().numpy()
|
260 |
+
loss = ne.evaluate("sum(-log(outputs[arange(outputs.shape[0]), labels]))") / len(labels)
|
261 |
+
|
262 |
+
# Backpropagate and update the model parameters
|
263 |
+
ne.evaluate("loss", out=loss)
|
264 |
+
grad_outputs = np.ones_like(outputs)
|
265 |
+
grad_outputs[np.arange(grad_outputs.shape[0]), labels] = -1
|
266 |
+
grad_outputs /= len(labels)
|
267 |
+
grad_outputs = ne.evaluate("grad_outputs * loss_grad")
|
268 |
+
grad_outputs = torch.from_numpy(grad_outputs).to(device)
|
269 |
+
outputs = torch.from_numpy(outputs).to(device)
|
270 |
+
loss.backward(grad_outputs)
|
271 |
+
optimizer.step()
|
272 |
+
|
273 |
+
running_loss += loss.item()
|
274 |
+
|
275 |
+
epoch += 1
|
276 |
+
print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
|
277 |
+
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
278 |
+
|
279 |
+
return model
|
280 |
+
|
281 |
+
target_app_name = "GTA5.exe"
|
282 |
+
save_interval_seconds = 1 * 60
|
283 |
+
application_was_running = False
|
284 |
+
|
285 |
+
while True:
|
286 |
+
if is_target_app_running(target_app_name):
|
287 |
+
print("Target application is running. Training and updating the model...")
|
288 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=10)
|
289 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
290 |
+
application_was_running = True
|
291 |
+
elif application_was_running:
|
292 |
+
print("Target application has exited. Saving the model...")
|
293 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
294 |
+
print("Finished training and saved the model.")
|
295 |
+
break
|
296 |
+
else:
|
297 |
+
start_time = time.time()
|
298 |
+
print("Target application is not running. Waiting to detect the graphics API...")
|
299 |
+
while (time.time() - start_time) < 5:
|
300 |
+
if is_target_app_running(target_app_name):
|
301 |
+
if graphics_api := check_graphics_api(target_app_name):
|
302 |
+
print(f"Detected {graphics_api} in the target application.")
|
303 |
+
break
|
304 |
+
else:
|
305 |
+
print("Could not detect the graphics API used in the target application.")
|
306 |
+
time.sleep(1)
|
307 |
+
|
308 |
+
if not is_target_app_running(target_app_name):
|
309 |
+
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
310 |
+
break
|
311 |
+
|
312 |
+
|
313 |
+
while True:
|
314 |
+
if is_target_app_running(target_app_name):
|
315 |
+
if graphics_api := check_graphics_api(target_app_name):
|
316 |
+
print(f"Detected {graphics_api} in the target application.")
|
317 |
+
else:
|
318 |
+
print("Could not detect the graphics API used in the target application.")
|
319 |
+
else:
|
320 |
+
start_time = time.time()
|
321 |
+
print("Target application is not running. Waiting to start training and updating the model...")
|
322 |
+
while (time.time() - start_time) < 5:
|
323 |
+
if is_target_app_running(target_app_name):
|
324 |
+
print(f"Detected {graphics_api} in the target application.")
|
325 |
+
break
|
326 |
+
time.sleep(1)
|
327 |
+
|
328 |
+
if not is_target_app_running(target_app_name):
|
329 |
+
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
330 |
+
break
|
331 |
+
|
332 |
+
|
333 |
+
#Generate some random data for the boxplots
|
334 |
+
np.random.seed(0)
|
335 |
+
original_data = np.random.normal(0, 1, 100)
|
336 |
+
trained_data = np.random.normal(0.5, 1, 100)
|
337 |
+
|
338 |
+
while True:
|
339 |
+
if is_target_app_running(target_app_name):
|
340 |
+
print("Target application is running. Training and updating the model...")
|
341 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=10)
|
342 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
343 |
+
|
344 |
+
# Create a box plot of the original and trained data
|
345 |
+
plt.figure()
|
346 |
+
plt.boxplot([original_data, trained_data], labels=["Original Data", "Trained Data"])
|
347 |
+
plt.title("Boxplot of Original and Trained Data")
|
348 |
+
plt.ylabel("Values")
|
349 |
+
plt.show()
|
350 |
+
|
351 |
+
# Save the box plot as an image
|
352 |
+
plt.savefig(r"G:\Epic Games\GTAV\GTA5_AI\Plot Box Comparison\boxplot_comparison.png")
|
353 |
+
|
354 |
+
application_was_running = True
|
355 |
+
elif application_was_running:
|
356 |
+
print("Target application has exited. Saving the model...")
|
357 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
358 |
+
print("Finished training and saved the model.")
|
359 |
+
break
|
360 |
+
else:
|
361 |
+
start_time = time.time()
|
362 |
+
print("Target application is not running. Waiting to detect the graphics API...")
|
363 |
+
while (time.time() - start_time) < 5:
|
364 |
+
if is_target_app_running(target_app_name):
|
365 |
+
if graphics_api := check_graphics_api(target_app_name):
|
366 |
+
print(f"Detected {graphics_api} in the target application.")
|
367 |
+
break
|
368 |
+
else:
|
369 |
+
print("Could not detect the graphics API used in the target application.")
|
370 |
+
time.sleep(1)
|
371 |
+
|
372 |
+
if not is_target_app_running(target_app_name):
|
373 |
+
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
374 |
+
break
|