layout_lmqa2
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 5.9655
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2013 | 0.22 | 50 | 3.7438 |
2.3774 | 0.44 | 100 | 2.5267 |
2.2229 | 0.66 | 150 | 2.7223 |
2.1498 | 0.88 | 200 | 2.8705 |
1.4533 | 1.11 | 250 | 3.0854 |
1.5673 | 1.33 | 300 | 2.8091 |
1.5592 | 1.55 | 350 | 2.6279 |
1.485 | 1.77 | 400 | 3.3509 |
1.681 | 1.99 | 450 | 3.1878 |
1.1367 | 2.21 | 500 | 2.9910 |
1.1526 | 2.43 | 550 | 3.2224 |
1.1906 | 2.65 | 600 | 2.5136 |
1.074 | 2.88 | 650 | 2.6405 |
1.0517 | 3.1 | 700 | 3.2235 |
0.8895 | 3.32 | 750 | 3.3759 |
1.0624 | 3.54 | 800 | 3.0902 |
0.9233 | 3.76 | 850 | 2.7508 |
1.132 | 3.98 | 900 | 3.3255 |
0.8189 | 4.2 | 950 | 3.2207 |
0.7035 | 4.42 | 1000 | 3.0181 |
0.9637 | 4.65 | 1050 | 3.1403 |
0.8076 | 4.87 | 1100 | 3.2147 |
1.0471 | 5.09 | 1150 | 3.3560 |
0.5627 | 5.31 | 1200 | 3.4104 |
0.5421 | 5.53 | 1250 | 3.5375 |
0.5731 | 5.75 | 1300 | 3.0006 |
0.73 | 5.97 | 1350 | 3.0435 |
0.6019 | 6.19 | 1400 | 3.3767 |
0.4892 | 6.42 | 1450 | 3.6138 |
0.4614 | 6.64 | 1500 | 3.9243 |
0.5162 | 6.86 | 1550 | 3.5715 |
0.4991 | 7.08 | 1600 | 3.2088 |
0.3386 | 7.3 | 1650 | 3.5060 |
0.575 | 7.52 | 1700 | 3.4207 |
0.2257 | 7.74 | 1750 | 3.4735 |
0.5039 | 7.96 | 1800 | 3.5317 |
0.3965 | 8.19 | 1850 | 3.6146 |
0.3873 | 8.41 | 1900 | 3.2403 |
0.5208 | 8.63 | 1950 | 3.8434 |
0.3888 | 8.85 | 2000 | 3.9669 |
0.4219 | 9.07 | 2050 | 3.5631 |
0.3614 | 9.29 | 2100 | 3.9210 |
0.3197 | 9.51 | 2150 | 3.9130 |
0.2054 | 9.73 | 2200 | 3.7559 |
0.5968 | 9.96 | 2250 | 3.2244 |
0.2377 | 10.18 | 2300 | 3.5148 |
0.297 | 10.4 | 2350 | 3.5326 |
0.2642 | 10.62 | 2400 | 3.8176 |
0.2677 | 10.84 | 2450 | 4.1067 |
0.2095 | 11.06 | 2500 | 4.3299 |
0.3002 | 11.28 | 2550 | 3.9936 |
0.2364 | 11.5 | 2600 | 3.9769 |
0.1413 | 11.73 | 2650 | 3.9973 |
0.2019 | 11.95 | 2700 | 4.0319 |
0.1415 | 12.17 | 2750 | 4.2180 |
0.15 | 12.39 | 2800 | 4.3259 |
0.1762 | 12.61 | 2850 | 4.5584 |
0.4126 | 12.83 | 2900 | 3.9886 |
0.2911 | 13.05 | 2950 | 4.0256 |
0.1152 | 13.27 | 3000 | 4.5233 |
0.2455 | 13.5 | 3050 | 4.2867 |
0.2496 | 13.72 | 3100 | 4.4002 |
0.0928 | 13.94 | 3150 | 4.3525 |
0.3045 | 14.16 | 3200 | 4.2719 |
0.1555 | 14.38 | 3250 | 3.8901 |
0.1172 | 14.6 | 3300 | 4.4369 |
0.2843 | 14.82 | 3350 | 3.7676 |
0.3302 | 15.04 | 3400 | 3.3223 |
0.092 | 15.27 | 3450 | 4.1753 |
0.1656 | 15.49 | 3500 | 3.9628 |
0.1641 | 15.71 | 3550 | 4.3255 |
0.165 | 15.93 | 3600 | 3.8722 |
0.1983 | 16.15 | 3650 | 3.6260 |
0.0686 | 16.37 | 3700 | 3.9814 |
0.0061 | 16.59 | 3750 | 4.4310 |
0.1354 | 16.81 | 3800 | 4.7237 |
0.0754 | 17.04 | 3850 | 4.7184 |
0.0883 | 17.26 | 3900 | 4.3898 |
0.1116 | 17.48 | 3950 | 4.7914 |
0.1589 | 17.7 | 4000 | 4.5216 |
0.1113 | 17.92 | 4050 | 4.6836 |
0.0655 | 18.14 | 4100 | 4.9408 |
0.0051 | 18.36 | 4150 | 5.1494 |
0.0871 | 18.58 | 4200 | 4.7780 |
0.0981 | 18.81 | 4250 | 4.6118 |
0.21 | 19.03 | 4300 | 4.2467 |
0.048 | 19.25 | 4350 | 5.1837 |
0.068 | 19.47 | 4400 | 4.7416 |
0.1022 | 19.69 | 4450 | 5.4841 |
0.175 | 19.91 | 4500 | 4.9699 |
0.1534 | 20.13 | 4550 | 4.7240 |
0.0797 | 20.35 | 4600 | 4.8518 |
0.0188 | 20.58 | 4650 | 5.5081 |
0.1331 | 20.8 | 4700 | 5.1632 |
0.0603 | 21.02 | 4750 | 5.0985 |
0.0343 | 21.24 | 4800 | 4.7654 |
0.0045 | 21.46 | 4850 | 4.9135 |
0.0891 | 21.68 | 4900 | 4.9972 |
0.0801 | 21.9 | 4950 | 4.5666 |
0.0022 | 22.12 | 5000 | 4.8593 |
0.0517 | 22.35 | 5050 | 4.7227 |
0.0367 | 22.57 | 5100 | 5.0086 |
0.0481 | 22.79 | 5150 | 4.8354 |
0.139 | 23.01 | 5200 | 4.8345 |
0.1258 | 23.23 | 5250 | 4.4733 |
0.005 | 23.45 | 5300 | 4.7410 |
0.0116 | 23.67 | 5350 | 5.0803 |
0.1254 | 23.89 | 5400 | 4.4456 |
0.0638 | 24.12 | 5450 | 5.0900 |
0.0216 | 24.34 | 5500 | 5.2054 |
0.0039 | 24.56 | 5550 | 5.3762 |
0.0889 | 24.78 | 5600 | 5.5210 |
0.0839 | 25.0 | 5650 | 5.6013 |
0.0269 | 25.22 | 5700 | 5.2511 |
0.0363 | 25.44 | 5750 | 5.2066 |
0.0042 | 25.66 | 5800 | 5.3123 |
0.1419 | 25.88 | 5850 | 5.2073 |
0.0727 | 26.11 | 5900 | 5.0850 |
0.009 | 26.33 | 5950 | 5.2158 |
0.1018 | 26.55 | 6000 | 5.2223 |
0.0017 | 26.77 | 6050 | 5.2139 |
0.1191 | 26.99 | 6100 | 5.6648 |
0.0256 | 27.21 | 6150 | 5.3956 |
0.0618 | 27.43 | 6200 | 5.2004 |
0.0266 | 27.65 | 6250 | 5.1969 |
0.0005 | 27.88 | 6300 | 5.2097 |
0.0917 | 28.1 | 6350 | 4.6288 |
0.0186 | 28.32 | 6400 | 5.0034 |
0.1229 | 28.54 | 6450 | 5.4629 |
0.0064 | 28.76 | 6500 | 5.7815 |
0.0585 | 28.98 | 6550 | 5.3538 |
0.2033 | 29.2 | 6600 | 4.8341 |
0.104 | 29.42 | 6650 | 5.3541 |
0.074 | 29.65 | 6700 | 5.0912 |
0.0066 | 29.87 | 6750 | 5.3359 |
0.1029 | 30.09 | 6800 | 4.8182 |
0.1277 | 30.31 | 6850 | 4.3439 |
0.0568 | 30.53 | 6900 | 4.3320 |
0.0103 | 30.75 | 6950 | 5.0165 |
0.0159 | 30.97 | 7000 | 5.1813 |
0.0005 | 31.19 | 7050 | 5.3596 |
0.0467 | 31.42 | 7100 | 4.9367 |
0.0004 | 31.64 | 7150 | 5.1753 |
0.0026 | 31.86 | 7200 | 5.5320 |
0.0239 | 32.08 | 7250 | 5.3541 |
0.0004 | 32.3 | 7300 | 5.4588 |
0.0253 | 32.52 | 7350 | 5.6500 |
0.0197 | 32.74 | 7400 | 5.6978 |
0.0011 | 32.96 | 7450 | 5.8706 |
0.0411 | 33.19 | 7500 | 5.7531 |
0.0011 | 33.41 | 7550 | 5.7070 |
0.0195 | 33.63 | 7600 | 5.6306 |
0.0182 | 33.85 | 7650 | 5.5179 |
0.0098 | 34.07 | 7700 | 5.6809 |
0.0695 | 34.29 | 7750 | 6.0599 |
0.0017 | 34.51 | 7800 | 5.8505 |
0.0222 | 34.73 | 7850 | 5.8474 |
0.014 | 34.96 | 7900 | 5.9761 |
0.0014 | 35.18 | 7950 | 5.9167 |
0.068 | 35.4 | 8000 | 5.1020 |
0.0237 | 35.62 | 8050 | 5.1683 |
0.015 | 35.84 | 8100 | 5.1664 |
0.0006 | 36.06 | 8150 | 5.2310 |
0.0142 | 36.28 | 8200 | 5.4119 |
0.0004 | 36.5 | 8250 | 5.5409 |
0.0027 | 36.73 | 8300 | 5.5143 |
0.0228 | 36.95 | 8350 | 5.5045 |
0.0004 | 37.17 | 8400 | 5.4856 |
0.0029 | 37.39 | 8450 | 5.6607 |
0.0619 | 37.61 | 8500 | 5.7278 |
0.1015 | 37.83 | 8550 | 5.7307 |
0.0006 | 38.05 | 8600 | 6.0086 |
0.0845 | 38.27 | 8650 | 5.5904 |
0.0139 | 38.5 | 8700 | 5.7250 |
0.0033 | 38.72 | 8750 | 5.7300 |
0.0911 | 38.94 | 8800 | 5.3312 |
0.0015 | 39.16 | 8850 | 5.4900 |
0.0714 | 39.38 | 8900 | 5.4430 |
0.0742 | 39.6 | 8950 | 5.3748 |
0.0156 | 39.82 | 9000 | 5.3902 |
0.0696 | 40.04 | 9050 | 5.2539 |
0.0514 | 40.27 | 9100 | 5.3639 |
0.0013 | 40.49 | 9150 | 5.4466 |
0.0021 | 40.71 | 9200 | 5.5072 |
0.0005 | 40.93 | 9250 | 5.6767 |
0.0004 | 41.15 | 9300 | 5.7561 |
0.0458 | 41.37 | 9350 | 5.6678 |
0.0168 | 41.59 | 9400 | 5.6505 |
0.0005 | 41.81 | 9450 | 5.7674 |
0.0004 | 42.04 | 9500 | 5.8361 |
0.0028 | 42.26 | 9550 | 5.7886 |
0.0042 | 42.48 | 9600 | 5.7266 |
0.0004 | 42.7 | 9650 | 5.7970 |
0.0058 | 42.92 | 9700 | 5.8543 |
0.0627 | 43.14 | 9750 | 5.8685 |
0.0004 | 43.36 | 9800 | 5.8885 |
0.0003 | 43.58 | 9850 | 5.9231 |
0.0044 | 43.81 | 9900 | 5.9154 |
0.0047 | 44.03 | 9950 | 5.9383 |
0.0033 | 44.25 | 10000 | 5.9505 |
0.005 | 44.47 | 10050 | 5.9172 |
0.0649 | 44.69 | 10100 | 5.9263 |
0.0003 | 44.91 | 10150 | 5.8487 |
0.0003 | 45.13 | 10200 | 5.8564 |
0.0003 | 45.35 | 10250 | 5.8637 |
0.0034 | 45.58 | 10300 | 5.8800 |
0.0003 | 45.8 | 10350 | 5.9121 |
0.0052 | 46.02 | 10400 | 5.9066 |
0.0003 | 46.24 | 10450 | 5.9025 |
0.0043 | 46.46 | 10500 | 5.8860 |
0.0007 | 46.68 | 10550 | 5.9075 |
0.0003 | 46.9 | 10600 | 5.9482 |
0.0043 | 47.12 | 10650 | 5.9420 |
0.0003 | 47.35 | 10700 | 5.9459 |
0.0003 | 47.57 | 10750 | 5.9508 |
0.0075 | 47.79 | 10800 | 5.9489 |
0.0004 | 48.01 | 10850 | 5.9076 |
0.0485 | 48.23 | 10900 | 5.9280 |
0.0003 | 48.45 | 10950 | 5.9304 |
0.0031 | 48.67 | 11000 | 5.9398 |
0.0045 | 48.89 | 11050 | 5.9457 |
0.0003 | 49.12 | 11100 | 5.9482 |
0.0003 | 49.34 | 11150 | 5.9483 |
0.0003 | 49.56 | 11200 | 5.9479 |
0.0091 | 49.78 | 11250 | 5.9656 |
0.0003 | 50.0 | 11300 | 5.9655 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.