P3ps's picture
update model card README.md
402b087
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: test-trainer-glue-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value:
accuracy: 0.8627450980392157
- name: F1
type: f1
value: 0.902439024390244
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-trainer-glue-mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6850
- Accuracy: {'accuracy': 0.8627450980392157}
- F1: 0.9024
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:------:|
| No log | 1.0 | 459 | 0.3762 | {'accuracy': 0.8455882352941176} | 0.8873 |
| 0.4903 | 2.0 | 918 | 0.5500 | {'accuracy': 0.8431372549019608} | 0.8923 |
| 0.2654 | 3.0 | 1377 | 0.6850 | {'accuracy': 0.8627450980392157} | 0.9024 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3