Oysiyl's picture
Update README.md
f35ee62 verified
metadata
base_model: ylacombe/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-ukrainian-colab-CV16.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_1
          type: mozilla-foundation/common_voice_16_1
          config: uk
          split: test
          args: uk
        metrics:
          - name: Wer
            type: wer
            value: 0.0987
license: mit
datasets:
  - mozilla-foundation/common_voice_16_1
language:
  - uk
pipeline_tag: automatic-speech-recognition
library_name: transformers

w2v-bert-2.0-ukrainian-colab-CV16.0

This model is a fine-tuned version of ylacombe/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1438
  • Wer: 0.0987

Note: the model was finetuned on Ukrainian alphabet in lowercase plus "'" sign. Therefore this model can't add punctuation or capitalization.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0371 1.98 525 0.1509 0.1498
0.0728 3.96 1050 0.1256 0.1279
0.0382 5.94 1575 0.1260 0.1041
0.0213 7.92 2100 0.1333 0.0997
0.0118 9.91 2625 0.1438 0.0987

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.15.1