Image-to-Text
Chinese
English
FLIP / pretrain.py
OpenFace-CQUPT
Upload 16 files
3d7aa36 verified
'''
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
* By Junnan Li
'''
import argparse
import os
from ruamel.yaml import YAML
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.cuda.amp import GradScaler, autocast
from models.fflip_pretrain import fflip_pretrain
from models import utils
from eval.pretrain_eval import evaluation, itm_eval
from models.utils import warmup_lr_schedule, step_lr_schedule
from data import create_dataset, create_sampler, create_loader
import sys
def train(model, data_loader, optimizer, epoch, device, config):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
# 混合精度训练配置
scaler = GradScaler()
for i, (image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if epoch==0:
warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
image = image.to(device, non_blocking=True)
idx = idx.to(device,non_blocking=True)
optimizer.zero_grad()
# ramp up alpha in the first 2 epochs
alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader)))
loss_ita, loss_itm = model(image, caption, alpha = alpha, idx=idx)
loss = loss_ita + loss_itm
# loss.backward()
# optimizer.step()
# mixed precision training
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating dataset")
train_dataset, test_dataset = create_dataset(config['dataset'], config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None]
else:
samplers = [None, None]
train_loader, test_loader = create_loader([train_dataset, test_dataset], samplers,
batch_size=[config['batch_size_train']] + [config['batch_size_test']],
num_workers=[8, 8],
is_trains=[True, False],
collate_fns=[None, None])
#### Model ####
print("Creating model")
model = fflip_pretrain(pretrained=config['pretrained'], config=config['config'], vit=config['vit'], queue_size=config['queue_size'])
model = model.to(device)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
start_epoch = 0
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
model.load_state_dict(state_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
print('resume checkpoint from %s'%args.checkpoint)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
best = 0
best_epoch = 0
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, config['max_epoch']):
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
train_stats = train(model, train_loader, optimizer, epoch, device, config)
score_test_i2t, score_test_t2i = evaluation(args, model_without_ddp, test_loader, device, config)
if utils.is_main_process():
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img,
test_loader.dataset.img2txt)
print(test_result)
if args.evaluate:
log_stats = {**{f'test_{k}': v for k, v in test_result.items()}}
with open(os.path.join(args.output_dir, "evaluate_log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_result.items()},
'epoch': epoch,
'best_epoch': best_epoch,
}
with open(os.path.join(args.output_dir, "train_log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
if test_result['r_mean'] > best:
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best = test_result['r_mean']
best_epoch = epoch
if args.distributed:
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/pretrain.yaml')
parser.add_argument('--output_dir', default='./outputs')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--evaluate', type=bool, default=False)
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=False, type=bool, help='whether to use distributed mode to training')
args = parser.parse_args()
yaml = YAML(typ='safe')
config = yaml.load(open(args.config, 'r'))
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)