Image-to-Text
Chinese
English
OpenFace-CQUPT commited on
Commit
3d7aa36
1 Parent(s): 37be766

Upload 16 files

Browse files
ckpt/FLIP-FaceCaption-15M.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5d00a8eaff814d33c9900b0699f954b40c1883dee436e2607fc4881a09a1e37
3
+ size 3702484906
configs/bert_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 30522,
19
+ "encoder_width": 768,
20
+ "add_cross_attention": true
21
+ }
configs/pretrain.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '' # for image path
2
+ ann_root: '' # for json path
3
+ dataset: 'facecaption'
4
+
5
+ config: './configs'
6
+
7
+
8
+ pretrained: ''
9
+ intermediate_hidden_state: False
10
+
11
+ # size of vit model; base or large
12
+ vit: 'base'
13
+ image_size: 224
14
+ batch_size_train: 80
15
+ batch_size_test: 80
16
+
17
+ queue_size: 61440
18
+ alpha: 0.4
19
+ k_test: 256
20
+
21
+ # optimizer
22
+ weight_decay: 0.05
23
+ init_lr: 3e-5
24
+ min_lr: 1e-6
25
+ warmup_lr: 1e-6
26
+ lr_decay_rate: 0.9
27
+ max_epoch: 15
28
+ warmup_steps: 20000
configs/vision_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "hidden_act": "quick_gelu",
4
+ "hidden_size": 768,
5
+ "image_size": 224,
6
+ "initializer_factor": 1.0,
7
+ "initializer_range": 0.02,
8
+ "intermediate_size": 3072,
9
+ "layer_norm_eps": 1e-05,
10
+ "model_type": "clip_vision_model",
11
+ "num_attention_heads": 12,
12
+ "num_channels": 3,
13
+ "num_hidden_layers": 12,
14
+ "patch_size": 16,
15
+ "projection_dim": 512,
16
+ "intermediate_transformer_output": [4, 6, 8]
17
+ }
data/__init__.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.data import DataLoader
3
+ from torchvision import transforms
4
+ from torchvision.transforms.functional import InterpolationMode
5
+ from data.facecaption_dataset import facecaption_train, facecaption_test
6
+ from data.randaugment import RandomAugment
7
+
8
+ def create_dataset(dataset, config, min_scale=0.5):
9
+
10
+ normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
11
+
12
+ transform_train = transforms.Compose([
13
+ transforms.Resize((config['image_size'], config['image_size']),interpolation=InterpolationMode.BICUBIC),
14
+ transforms.RandomHorizontalFlip(),
15
+ RandomAugment(2,5,isPIL=True,augs=['Identity','Brightness','Sharpness','Equalize',
16
+ 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
17
+ transforms.ToTensor(),
18
+ normalize,
19
+ ])
20
+ transform_test = transforms.Compose([
21
+ transforms.Resize((config['image_size'], config['image_size']),interpolation=InterpolationMode.BICUBIC),
22
+ transforms.ToTensor(),
23
+ normalize,
24
+ ])
25
+
26
+ if dataset=='facecaption':
27
+ train_dataset = facecaption_train(transform_train, config['image_root'], config['ann_root'])
28
+ eval_dataset = facecaption_test(transform_test, config['image_root'], config['ann_root'])
29
+ return train_dataset, eval_dataset
30
+
31
+
32
+ def create_sampler(datasets, shuffles, num_tasks, global_rank):
33
+ samplers = []
34
+ for dataset,shuffle in zip(datasets,shuffles):
35
+ sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank, shuffle=shuffle)
36
+ samplers.append(sampler)
37
+ return samplers
38
+
39
+
40
+ def create_loader(datasets, samplers, batch_size, num_workers, is_trains, collate_fns):
41
+ loaders = []
42
+ for dataset,sampler,bs,n_worker,is_train,collate_fn in zip(datasets,samplers,batch_size,num_workers,is_trains,collate_fns):
43
+ if is_train:
44
+ shuffle = (sampler is None)
45
+ drop_last = True
46
+ else:
47
+ shuffle = False
48
+ drop_last = False
49
+ loader = DataLoader(
50
+ dataset,
51
+ batch_size=bs,
52
+ num_workers=n_worker,
53
+ pin_memory=True,
54
+ sampler=sampler,
55
+ shuffle=shuffle,
56
+ collate_fn=collate_fn,
57
+ drop_last=drop_last,
58
+ )
59
+ loaders.append(loader)
60
+ return loaders
61
+
data/facecaption_dataset.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import torch
4
+ from torch.utils.data import Dataset
5
+ from torchvision.datasets.utils import download_url
6
+ from PIL import Image, ImageFile
7
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
8
+ from glob import glob
9
+ from data.utils import pre_caption
10
+
11
+
12
+ class facecaption_train(Dataset):
13
+ def __init__(self, transform, image_root, ann_root, max_words=65, prompt=''):
14
+ '''
15
+ image_root (string): Root directory of images (e.g. coco/images/)
16
+ ann_root (string): directory to store the annotation file
17
+ '''
18
+ all_json = sorted(glob(os.path.join(ann_root, '*.json')))
19
+ self.annotation = []
20
+ for json_path in all_json[0:1]:
21
+ # for json_path in all_json[:-1]:
22
+ with open(json_path, 'r') as json_file:
23
+ data = json.load(json_file)
24
+ self.annotation.extend(data)
25
+
26
+ self.transform = transform
27
+ self.image_root = image_root
28
+ self.max_words = max_words
29
+ self.prompt = prompt
30
+
31
+ self.img_ids = {}
32
+ n = 0
33
+ for ann in self.annotation:
34
+ img_id = ann['image_id']#[7:]
35
+ if img_id not in self.img_ids.keys():
36
+ self.img_ids[img_id] = n
37
+ n += 1
38
+
39
+ def __len__(self):
40
+ return len(self.annotation)
41
+
42
+ def __getitem__(self, index):
43
+
44
+ ann = self.annotation[index]
45
+ image_path = os.path.join(self.image_root, ann['image'])
46
+ image = Image.open(image_path).convert('RGB')
47
+ image = self.transform(image)
48
+
49
+
50
+ caption = self.prompt + pre_caption(*ann['caption'], self.max_words)
51
+ image_id = self.img_ids[ann['image_id']]
52
+ return image, caption, image_id
53
+
54
+
55
+ class facecaption_test(Dataset):
56
+ def __init__(self, transform, image_root, ann_root, max_words=65):
57
+ '''
58
+ image_root (string): Root directory of images (e.g. coco/images/)
59
+ ann_root (string): directory to store the annotation file
60
+ '''
61
+ all_json = sorted(glob(os.path.join(ann_root, '*.json')))
62
+ self.annotation = []
63
+ for json_path in all_json[-1:]:
64
+ with open(json_path, 'r') as json_file:
65
+ data = json.load(json_file)
66
+ self.annotation.extend(data)
67
+ self.annotation = self.annotation[:5000]
68
+
69
+ self.transform = transform
70
+ self.image_root = image_root
71
+
72
+ self.text = []
73
+ self.image = []
74
+ self.txt2img = {}
75
+ self.img2txt = {}
76
+
77
+ txt_id = 0
78
+ for img_id, ann in enumerate(self.annotation):
79
+ self.image.append(ann['image'])
80
+ self.img2txt[img_id] = []
81
+ for i, caption in enumerate(ann['caption']):
82
+ self.text.append(pre_caption(caption, max_words))
83
+ self.img2txt[img_id].append(txt_id)
84
+ self.txt2img[txt_id] = img_id
85
+ txt_id += 1
86
+
87
+ def __len__(self):
88
+ return len(self.annotation)
89
+
90
+ def __getitem__(self, index):
91
+
92
+ ann = self.annotation[index]
93
+
94
+ image_path = os.path.join(self.image_root, ann['image'])
95
+ image = Image.open(image_path).convert('RGB')
96
+ image = self.transform(image)
97
+ return image, index
data/randaugment.py ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+
5
+ ## aug functions
6
+ def identity_func(img):
7
+ return img
8
+
9
+
10
+ def autocontrast_func(img, cutoff=0):
11
+ '''
12
+ same output as PIL.ImageOps.autocontrast
13
+ '''
14
+ n_bins = 256
15
+
16
+ def tune_channel(ch):
17
+ n = ch.size
18
+ cut = cutoff * n // 100
19
+ if cut == 0:
20
+ high, low = ch.max(), ch.min()
21
+ else:
22
+ hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
23
+ low = np.argwhere(np.cumsum(hist) > cut)
24
+ low = 0 if low.shape[0] == 0 else low[0]
25
+ high = np.argwhere(np.cumsum(hist[::-1]) > cut)
26
+ high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
27
+ if high <= low:
28
+ table = np.arange(n_bins)
29
+ else:
30
+ scale = (n_bins - 1) / (high - low)
31
+ offset = -low * scale
32
+ table = np.arange(n_bins) * scale + offset
33
+ table[table < 0] = 0
34
+ table[table > n_bins - 1] = n_bins - 1
35
+ table = table.clip(0, 255).astype(np.uint8)
36
+ return table[ch]
37
+
38
+ channels = [tune_channel(ch) for ch in cv2.split(img)]
39
+ out = cv2.merge(channels)
40
+ return out
41
+
42
+
43
+ def equalize_func(img):
44
+ '''
45
+ same output as PIL.ImageOps.equalize
46
+ PIL's implementation is different from cv2.equalize
47
+ '''
48
+ n_bins = 256
49
+
50
+ def tune_channel(ch):
51
+ hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
52
+ non_zero_hist = hist[hist != 0].reshape(-1)
53
+ step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
54
+ if step == 0: return ch
55
+ n = np.empty_like(hist)
56
+ n[0] = step // 2
57
+ n[1:] = hist[:-1]
58
+ table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
59
+ return table[ch]
60
+
61
+ channels = [tune_channel(ch) for ch in cv2.split(img)]
62
+ out = cv2.merge(channels)
63
+ return out
64
+
65
+
66
+ def rotate_func(img, degree, fill=(0, 0, 0)):
67
+ '''
68
+ like PIL, rotate by degree, not radians
69
+ '''
70
+ H, W = img.shape[0], img.shape[1]
71
+ center = W / 2, H / 2
72
+ M = cv2.getRotationMatrix2D(center, degree, 1)
73
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
74
+ return out
75
+
76
+
77
+ def solarize_func(img, thresh=128):
78
+ '''
79
+ same output as PIL.ImageOps.posterize
80
+ '''
81
+ table = np.array([el if el < thresh else 255 - el for el in range(256)])
82
+ table = table.clip(0, 255).astype(np.uint8)
83
+ out = table[img]
84
+ return out
85
+
86
+
87
+ def color_func(img, factor):
88
+ '''
89
+ same output as PIL.ImageEnhance.Color
90
+ '''
91
+ ## implementation according to PIL definition, quite slow
92
+ # degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
93
+ # out = blend(degenerate, img, factor)
94
+ # M = (
95
+ # np.eye(3) * factor
96
+ # + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
97
+ # )[np.newaxis, np.newaxis, :]
98
+ M = (
99
+ np.float32([
100
+ [0.886, -0.114, -0.114],
101
+ [-0.587, 0.413, -0.587],
102
+ [-0.299, -0.299, 0.701]]) * factor
103
+ + np.float32([[0.114], [0.587], [0.299]])
104
+ )
105
+ out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
106
+ return out
107
+
108
+
109
+ def contrast_func(img, factor):
110
+ """
111
+ same output as PIL.ImageEnhance.Contrast
112
+ """
113
+ mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
114
+ table = np.array([(
115
+ el - mean) * factor + mean
116
+ for el in range(256)
117
+ ]).clip(0, 255).astype(np.uint8)
118
+ out = table[img]
119
+ return out
120
+
121
+
122
+ def brightness_func(img, factor):
123
+ '''
124
+ same output as PIL.ImageEnhance.Contrast
125
+ '''
126
+ table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
127
+ out = table[img]
128
+ return out
129
+
130
+
131
+ def sharpness_func(img, factor):
132
+ '''
133
+ The differences the this result and PIL are all on the 4 boundaries, the center
134
+ areas are same
135
+ '''
136
+ kernel = np.ones((3, 3), dtype=np.float32)
137
+ kernel[1][1] = 5
138
+ kernel /= 13
139
+ degenerate = cv2.filter2D(img, -1, kernel)
140
+ if factor == 0.0:
141
+ out = degenerate
142
+ elif factor == 1.0:
143
+ out = img
144
+ else:
145
+ out = img.astype(np.float32)
146
+ degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
147
+ out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
148
+ out = out.astype(np.uint8)
149
+ return out
150
+
151
+
152
+ def shear_x_func(img, factor, fill=(0, 0, 0)):
153
+ H, W = img.shape[0], img.shape[1]
154
+ M = np.float32([[1, factor, 0], [0, 1, 0]])
155
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
156
+ return out
157
+
158
+
159
+ def translate_x_func(img, offset, fill=(0, 0, 0)):
160
+ '''
161
+ same output as PIL.Image.transform
162
+ '''
163
+ H, W = img.shape[0], img.shape[1]
164
+ M = np.float32([[1, 0, -offset], [0, 1, 0]])
165
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
166
+ return out
167
+
168
+
169
+ def translate_y_func(img, offset, fill=(0, 0, 0)):
170
+ '''
171
+ same output as PIL.Image.transform
172
+ '''
173
+ H, W = img.shape[0], img.shape[1]
174
+ M = np.float32([[1, 0, 0], [0, 1, -offset]])
175
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
176
+ return out
177
+
178
+
179
+ def posterize_func(img, bits):
180
+ '''
181
+ same output as PIL.ImageOps.posterize
182
+ '''
183
+ out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
184
+ return out
185
+
186
+
187
+ def shear_y_func(img, factor, fill=(0, 0, 0)):
188
+ H, W = img.shape[0], img.shape[1]
189
+ M = np.float32([[1, 0, 0], [factor, 1, 0]])
190
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
191
+ return out
192
+
193
+
194
+ def cutout_func(img, pad_size, replace=(0, 0, 0)):
195
+ replace = np.array(replace, dtype=np.uint8)
196
+ H, W = img.shape[0], img.shape[1]
197
+ rh, rw = np.random.random(2)
198
+ pad_size = pad_size // 2
199
+ ch, cw = int(rh * H), int(rw * W)
200
+ x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
201
+ y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
202
+ out = img.copy()
203
+ out[x1:x2, y1:y2, :] = replace
204
+ return out
205
+
206
+
207
+ ### level to args
208
+ def enhance_level_to_args(MAX_LEVEL):
209
+ def level_to_args(level):
210
+ return ((level / MAX_LEVEL) * 1.8 + 0.1,)
211
+ return level_to_args
212
+
213
+
214
+ def shear_level_to_args(MAX_LEVEL, replace_value):
215
+ def level_to_args(level):
216
+ level = (level / MAX_LEVEL) * 0.3
217
+ if np.random.random() > 0.5: level = -level
218
+ return (level, replace_value)
219
+
220
+ return level_to_args
221
+
222
+
223
+ def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
224
+ def level_to_args(level):
225
+ level = (level / MAX_LEVEL) * float(translate_const)
226
+ if np.random.random() > 0.5: level = -level
227
+ return (level, replace_value)
228
+
229
+ return level_to_args
230
+
231
+
232
+ def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
233
+ def level_to_args(level):
234
+ level = int((level / MAX_LEVEL) * cutout_const)
235
+ return (level, replace_value)
236
+
237
+ return level_to_args
238
+
239
+
240
+ def solarize_level_to_args(MAX_LEVEL):
241
+ def level_to_args(level):
242
+ level = int((level / MAX_LEVEL) * 256)
243
+ return (level, )
244
+ return level_to_args
245
+
246
+
247
+ def none_level_to_args(level):
248
+ return ()
249
+
250
+
251
+ def posterize_level_to_args(MAX_LEVEL):
252
+ def level_to_args(level):
253
+ level = int((level / MAX_LEVEL) * 4)
254
+ return (level, )
255
+ return level_to_args
256
+
257
+
258
+ def rotate_level_to_args(MAX_LEVEL, replace_value):
259
+ def level_to_args(level):
260
+ level = (level / MAX_LEVEL) * 30
261
+ if np.random.random() < 0.5:
262
+ level = -level
263
+ return (level, replace_value)
264
+
265
+ return level_to_args
266
+
267
+
268
+ def adaptive_find_threshold_max_grad_var(src, aperture_size=3):
269
+ dx = cv2.Sobel(src, cv2.CV_16S, 1, 0, ksize=aperture_size)
270
+ dy = cv2.Sobel(src, cv2.CV_16S, 0, 1, ksize=aperture_size)
271
+ abs_grad_x = cv2.convertScaleAbs(dx)
272
+ abs_grad_y = cv2.convertScaleAbs(dy)
273
+ img_dxy = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
274
+ maxv = np.max(img_dxy)
275
+ hist_size = int(maxv)
276
+ hist = cv2.calcHist([img_dxy],[0],None,[hist_size],[0,hist_size])
277
+ HmaxNum = np.argmax(hist)
278
+ Emax = 0
279
+ for i in range(len(hist)):
280
+ N = hist[i]
281
+ if N > 0:
282
+ temp = (i - HmaxNum)*(i - HmaxNum) / N
283
+ temp = temp if temp < 1.0 else 1.0
284
+ Emax += temp
285
+ high = HmaxNum + Emax
286
+ low = high * 0.3
287
+ return int(low), int(high)
288
+
289
+ # def get_edge_func(img):
290
+ # # convert grayscale
291
+ # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
292
+ # img = cv2.equalizeHist(img)
293
+ # low, high = adaptive_find_threshold_max_grad_var(img)
294
+ # # low, high = adaptive_find_threshold_median(img)
295
+ # # print(low, high)
296
+ # img_canny = 255 - cv2.Canny(img, low, high)
297
+ # # 变为3通道
298
+ # img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR)
299
+ # return img_canny
300
+
301
+
302
+ func_dict = {
303
+ 'Identity': identity_func,
304
+ 'AutoContrast': autocontrast_func,
305
+ 'Equalize': equalize_func,
306
+ 'Rotate': rotate_func,
307
+ 'Solarize': solarize_func,
308
+ 'Color': color_func,
309
+ 'Contrast': contrast_func,
310
+ 'Brightness': brightness_func,
311
+ 'Sharpness': sharpness_func,
312
+ 'ShearX': shear_x_func,
313
+ 'TranslateX': translate_x_func,
314
+ 'TranslateY': translate_y_func,
315
+ 'Posterize': posterize_func,
316
+ 'ShearY': shear_y_func,
317
+ }
318
+
319
+ translate_const = 10
320
+ MAX_LEVEL = 10
321
+ replace_value = (128, 128, 128)
322
+ arg_dict = {
323
+ 'Identity': none_level_to_args,
324
+ 'AutoContrast': none_level_to_args,
325
+ 'Equalize': none_level_to_args,
326
+ 'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value),
327
+ 'Solarize': solarize_level_to_args(MAX_LEVEL),
328
+ 'Color': enhance_level_to_args(MAX_LEVEL),
329
+ 'Contrast': enhance_level_to_args(MAX_LEVEL),
330
+ 'Brightness': enhance_level_to_args(MAX_LEVEL),
331
+ 'Sharpness': enhance_level_to_args(MAX_LEVEL),
332
+ 'ShearX': shear_level_to_args(MAX_LEVEL, replace_value),
333
+ 'TranslateX': translate_level_to_args(
334
+ translate_const, MAX_LEVEL, replace_value
335
+ ),
336
+ 'TranslateY': translate_level_to_args(
337
+ translate_const, MAX_LEVEL, replace_value
338
+ ),
339
+ 'Posterize': posterize_level_to_args(MAX_LEVEL),
340
+ 'ShearY': shear_level_to_args(MAX_LEVEL, replace_value),
341
+ }
342
+
343
+
344
+ class RandomAugment(object):
345
+
346
+ def __init__(self, N=2, M=10, isPIL=False, augs=[]):
347
+ self.N = N
348
+ self.M = M
349
+ self.isPIL = isPIL
350
+ if augs:
351
+ self.augs = augs
352
+ else:
353
+ self.augs = list(arg_dict.keys())
354
+
355
+ def get_random_ops(self):
356
+ sampled_ops = np.random.choice(self.augs, self.N)
357
+ return [(op, 0.5, self.M) for op in sampled_ops]
358
+
359
+ def __call__(self, img):
360
+ if self.isPIL:
361
+ img = np.array(img)
362
+ ops = self.get_random_ops()
363
+ for name, prob, level in ops:
364
+ if np.random.random() > prob:
365
+ continue
366
+ args = arg_dict[name](level)
367
+ img = func_dict[name](img, *args)
368
+ return img
369
+
370
+
371
+ if __name__ == '__main__':
372
+ a = RandomAugment()
373
+ img = np.random.randn(32, 32, 3)
374
+ a(img)
data/utils.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import json
3
+ import os
4
+
5
+ import torch
6
+ import torch.distributed as dist
7
+
8
+ from models import utils
9
+
10
+ def pre_caption(caption,max_words=50):
11
+ caption = re.sub(
12
+ r"([.!\"()*#:;~])",
13
+ ' ',
14
+ caption.lower(),
15
+ )
16
+ caption = re.sub(
17
+ r"\s{2,}",
18
+ ' ',
19
+ caption,
20
+ )
21
+ caption = caption.rstrip('\n')
22
+ caption = caption.strip(' ')
23
+
24
+ #truncate caption
25
+ caption_words = caption.split(' ')
26
+ if len(caption_words)>max_words:
27
+ caption = ' '.join(caption_words[:max_words])
28
+
29
+ return caption
30
+
31
+ def pre_question(question,max_ques_words=50):
32
+ question = re.sub(
33
+ r"([.!\"()*#:;~])",
34
+ '',
35
+ question.lower(),
36
+ )
37
+ question = question.rstrip(' ')
38
+
39
+ #truncate question
40
+ question_words = question.split(' ')
41
+ if len(question_words)>max_ques_words:
42
+ question = ' '.join(question_words[:max_ques_words])
43
+
44
+ return question
45
+
46
+
47
+ def save_result(result, result_dir, filename, remove_duplicate=''):
48
+ result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,utils.get_rank()))
49
+ final_result_file = os.path.join(result_dir, '%s.json'%filename)
50
+
51
+ json.dump(result,open(result_file,'w'))
52
+
53
+ dist.barrier()
54
+
55
+ if utils.is_main_process():
56
+ # combine results from all processes
57
+ result = []
58
+
59
+ for rank in range(utils.get_world_size()):
60
+ result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,rank))
61
+ res = json.load(open(result_file,'r'))
62
+ result += res
63
+
64
+ if remove_duplicate:
65
+ result_new = []
66
+ id_list = []
67
+ for res in result:
68
+ if res[remove_duplicate] not in id_list:
69
+ id_list.append(res[remove_duplicate])
70
+ result_new.append(res)
71
+ result = result_new
72
+
73
+ json.dump(result,open(final_result_file,'w'))
74
+ print('result file saved to %s'%final_result_file)
75
+
76
+ return final_result_file
77
+
78
+
79
+
80
+ from pycocotools.coco import COCO
81
+ from pycocoevalcap.eval import COCOEvalCap
82
+ from torchvision.datasets.utils import download_url
83
+
84
+ def coco_caption_eval(coco_gt_root, results_file, split):
85
+ urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json',
86
+ 'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json'}
87
+ filenames = {'val':'coco_karpathy_val_gt.json','test':'coco_karpathy_test_gt.json'}
88
+
89
+ download_url(urls[split],coco_gt_root)
90
+ annotation_file = os.path.join(coco_gt_root,filenames[split])
91
+
92
+ # create coco object and coco_result object
93
+ coco = COCO(annotation_file)
94
+ coco_result = coco.loadRes(results_file)
95
+
96
+ # create coco_eval object by taking coco and coco_result
97
+ coco_eval = COCOEvalCap(coco, coco_result)
98
+
99
+ # evaluate on a subset of images by setting
100
+ # coco_eval.params['image_id'] = coco_result.getImgIds()
101
+ # please remove this line when evaluating the full validation set
102
+ # coco_eval.params['image_id'] = coco_result.getImgIds()
103
+
104
+ # evaluate results
105
+ # SPICE will take a few minutes the first time, but speeds up due to caching
106
+ coco_eval.evaluate()
107
+
108
+ # print output evaluation scores
109
+ for metric, score in coco_eval.eval.items():
110
+ print(f'{metric}: {score:.3f}')
111
+
112
+ return coco_eval
eval/pretrain_eval.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import time
3
+ import datetime
4
+ import torch
5
+ import torch.nn.functional as F
6
+ import torch.distributed as dist
7
+ from models import utils
8
+
9
+ @torch.no_grad()
10
+ def evaluation(args, model, data_loader, device, config):
11
+ # test
12
+ model.eval()
13
+
14
+ metric_logger = utils.MetricLogger(delimiter=" ")
15
+ header = 'Evaluation:'
16
+
17
+ print('Computing features for evaluation...')
18
+ start_time = time.time()
19
+ num_tasks = utils.get_world_size()
20
+ rank = utils.get_rank()
21
+
22
+ # ======================================== text feature ======================================== #
23
+ texts = data_loader.dataset.text
24
+ num_text = len(texts)
25
+ text_bs = 256
26
+ text_ids = []
27
+ text_embeds = []
28
+ text_atts = []
29
+ for i in range(0, num_text, text_bs):
30
+ text = texts[i: min(num_text, i + text_bs)]
31
+ text_input = model.tokenizer(text, padding='max_length', truncation=True, max_length=65,
32
+ return_tensors="pt").to(device)
33
+ text_feat = model.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, mode='text')
34
+ text_embed = F.normalize(model.text_proj(text_feat.last_hidden_state[:,0,:]), dim=-1)
35
+ text_embeds.append(text_embed)
36
+ text_ids.append(text_input.input_ids)
37
+ text_atts.append(text_input.attention_mask)
38
+
39
+ text_embeds = torch.cat(text_embeds, dim=0)
40
+ text_ids = torch.cat(text_ids, dim=0)
41
+ text_atts = torch.cat(text_atts, dim=0)
42
+
43
+ # ======================================== image&sketch feature ======================================== #
44
+ image_feats = []
45
+ image_embeds = []
46
+ for i, (image, img_id) in enumerate(data_loader):
47
+ image = image.to(device)
48
+ image_feat = model.visual_encoder(image).last_hidden_state
49
+ image_embed = F.normalize(model.vision_proj(image_feat[:,0,:]), dim=-1)
50
+
51
+ image_feats.append(image_feat.cpu())
52
+ image_embeds.append(image_embed)
53
+
54
+ image_feats = torch.cat(image_feats, dim=0).to(device)
55
+ image_embeds = torch.cat(image_embeds, dim=0).to(device)
56
+ print('Computing features Cost time {}'.format(time.time() - start_time))
57
+
58
+ # ======================================== i2t score ======================================== #
59
+ sims_matrix = image_embeds @ text_embeds.t()
60
+ score_matrix_i2t = torch.full((len(data_loader.dataset.image), len(texts)), -100.0).to(device)
61
+ step = sims_matrix.size(0) // num_tasks + 1
62
+ start = rank * step
63
+ end = min(sims_matrix.size(0), start + step)
64
+
65
+ for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
66
+ topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
67
+
68
+ encoder_output = image_feats[start + i].repeat(config['k_test'], 1, 1).to(device)
69
+ encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
70
+ output = model.text_encoder(text_ids[topk_idx],
71
+ attention_mask=text_atts[topk_idx],
72
+ encoder_hidden_states=encoder_output,
73
+ encoder_attention_mask=encoder_att,
74
+ return_dict=True,
75
+ )
76
+ score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
77
+ score_matrix_i2t[start + i, topk_idx] = score + topk_sim
78
+
79
+ # ======================================== t2i score ======================================== #
80
+ sims_matrix = sims_matrix.t()
81
+ score_matrix_t2i = torch.full((len(texts), len(data_loader.dataset.image)), -100.0).to(device)
82
+
83
+ step = sims_matrix.size(0) // num_tasks + 1
84
+ start = rank * step
85
+ end = min(sims_matrix.size(0), start + step)
86
+ for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
87
+ topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
88
+ encoder_output = image_feats[topk_idx].to(device)
89
+ encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
90
+ output = model.text_encoder(text_ids[start + i].repeat(config['k_test'], 1),
91
+ attention_mask=text_atts[start + i].repeat(config['k_test'], 1),
92
+ encoder_hidden_states=encoder_output,
93
+ encoder_attention_mask=encoder_att,
94
+ return_dict=True,
95
+ )
96
+ score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
97
+ score_matrix_t2i[start + i, topk_idx] = topk_sim + score
98
+
99
+ if args.distributed:
100
+ dist.barrier()
101
+ torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM)
102
+ torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM)
103
+
104
+ total_time = time.time() - start_time
105
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
106
+ print('Evaluation time {}'.format(total_time_str))
107
+
108
+ return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
109
+
110
+
111
+ @torch.no_grad()
112
+ def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
113
+ # Images->Text
114
+ ranks = np.zeros(scores_i2t.shape[0])
115
+ for index, score in enumerate(scores_i2t):
116
+ inds = np.argsort(score)[::-1]
117
+ # Score
118
+ rank = 1e20
119
+ for i in img2txt[index]:
120
+ tmp = np.where(inds == i)[0][0]
121
+ if tmp < rank:
122
+ rank = tmp
123
+ ranks[index] = rank
124
+
125
+ # Compute metrics
126
+ tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
127
+ tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
128
+ tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
129
+
130
+ # Text->Images
131
+ ranks = np.zeros(scores_t2i.shape[0])
132
+
133
+ for index, score in enumerate(scores_t2i):
134
+ inds = np.argsort(score)[::-1]
135
+ ranks[index] = np.where(inds == txt2img[index])[0][0]
136
+
137
+ # Compute metrics
138
+ ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
139
+ ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
140
+ ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
141
+
142
+ tr_mean = (tr1 + tr5 + tr10) / 3
143
+ ir_mean = (ir1 + ir5 + ir10) / 3
144
+ r_mean = (tr_mean + ir_mean) / 2
145
+
146
+ eval_result = {
147
+ 'txt_r1': tr1,
148
+ 'txt_r5': tr5,
149
+ 'txt_r10': tr10,
150
+ 'txt_r_mean': tr_mean,
151
+ 'img_r1': ir1,
152
+ 'img_r5': ir5,
153
+ 'img_r10': ir10,
154
+ 'img_r_mean': ir_mean,
155
+ 'r_mean': r_mean}
156
+ return eval_result
models/__init__.py ADDED
File without changes
models/fflip.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ @file fflip.py
3
+ @brief This file contains the code for the multimodal model. It is a modified version of the CLIP model from the huggingface transformers library.
4
+ @author yutangli
5
+ """
6
+
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from transformers.modeling_outputs import BaseModelOutputWithPooling
11
+ from transformers.utils import logging
12
+ from typing import Optional, Union, Tuple
13
+ from torch import Tensor, device, dtype, nn
14
+ from transformers import BertTokenizer
15
+
16
+ import os
17
+ from urllib.parse import urlparse
18
+ from timm.models.hub import download_cached_file
19
+
20
+ from transformers.modeling_outputs import (
21
+ BaseModelOutputWithPastAndCrossAttentions,
22
+ BaseModelOutputWithPoolingAndCrossAttentions,
23
+ CausalLMOutputWithCrossAttentions,
24
+ MaskedLMOutput,
25
+ MultipleChoiceModelOutput,
26
+ NextSentencePredictorOutput,
27
+ QuestionAnsweringModelOutput,
28
+ SequenceClassifierOutput,
29
+ TokenClassifierOutput,
30
+ )
31
+
32
+ from models.mm import (
33
+ VisionTrainedModel,
34
+ BertEmbeddings,
35
+ BertEncoder,
36
+ BertPreTrainedModel,
37
+ BertPooler,
38
+ BertConfig,
39
+ VisionConfig,
40
+ VisionTransformer)
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+
45
+ def init_tokenizer():
46
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
47
+ tokenizer.add_special_tokens({'bos_token':'[DEC]'})
48
+ tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
49
+ tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
50
+ return tokenizer
51
+
52
+
53
+ class VisionModel(VisionTrainedModel):
54
+ config_class = VisionConfig
55
+ main_input_name = "pixel_values"
56
+
57
+ def __init__(self, config: VisionConfig):
58
+ super().__init__(config)
59
+ self.vision_model = VisionTransformer(config)
60
+ # Initialize weights and apply final processing
61
+ self.post_init()
62
+
63
+ def get_input_embeddings(self) -> nn.Module:
64
+ return self.vision_model.embeddings.patch_embedding
65
+
66
+ @staticmethod
67
+ def get_output_channel(model_type):
68
+ if model_type == 'base':
69
+ return 768
70
+ if model_type == 'large':
71
+ return 1024
72
+ if model_type == 'huge':
73
+ return 1280
74
+
75
+ @staticmethod
76
+ def get_default_output_indices(model_type):
77
+ if model_type == 'base':
78
+ return [3, 5, 7, 11]
79
+ if model_type == 'large':
80
+ return [7, 11, 15, 23]
81
+ if model_type == 'huge':
82
+ return [8, 14, 20, 31]
83
+
84
+ def forward(
85
+ self,
86
+ pixel_values: Optional[torch.FloatTensor] = None,
87
+ output_attentions: Optional[bool] = None,
88
+ output_hidden_states: Optional[bool] = None,
89
+ return_dict: Optional[bool] = None,
90
+ intermediate_hidden_state: Optional[bool] = None
91
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
92
+ r"""
93
+ Returns:
94
+
95
+ Examples:
96
+
97
+ ```python
98
+ >>> from PIL import Image
99
+ >>> import requests
100
+ >>> from transformers import AutoProcessor, CLIPVisionModel
101
+
102
+ >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
103
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
104
+
105
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
106
+ >>> image = Image.open(requests.get(url, stream=True).raw)
107
+
108
+ >>> inputs = processor(images=image, return_tensors="pt")
109
+
110
+ >>> outputs = model(**inputs)
111
+ >>> last_hidden_state = outputs.last_hidden_state
112
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
113
+ ```"""
114
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
115
+
116
+ return self.vision_model(
117
+ pixel_values=pixel_values,
118
+ output_attentions=output_attentions,
119
+ output_hidden_states=output_hidden_states,
120
+ return_dict=return_dict,
121
+ intermediate_hidden_state=intermediate_hidden_state
122
+ )
123
+
124
+
125
+ class BertModel(BertPreTrainedModel):
126
+ """
127
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
128
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
129
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
130
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
131
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
132
+ input to the forward pass.
133
+ """
134
+
135
+ def __init__(self, config, add_pooling_layer=True):
136
+ super().__init__(config)
137
+ self.config = config
138
+
139
+ self.embeddings = BertEmbeddings(config)
140
+
141
+ self.encoder = BertEncoder(config)
142
+
143
+ self.pooler = BertPooler(config) if add_pooling_layer else None
144
+
145
+ self.init_weights()
146
+
147
+
148
+ def get_input_embeddings(self):
149
+ return self.embeddings.word_embeddings
150
+
151
+ def set_input_embeddings(self, value):
152
+ self.embeddings.word_embeddings = value
153
+
154
+ def _prune_heads(self, heads_to_prune):
155
+ """
156
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
157
+ class PreTrainedModel
158
+ """
159
+ for layer, heads in heads_to_prune.items():
160
+ self.encoder.layer[layer].attention.prune_heads(heads)
161
+
162
+
163
+ def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
164
+ """
165
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
166
+
167
+ Arguments:
168
+ attention_mask (:obj:`torch.Tensor`):
169
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
170
+ input_shape (:obj:`Tuple[int]`):
171
+ The shape of the input to the model.
172
+ device: (:obj:`torch.device`):
173
+ The device of the input to the model.
174
+
175
+ Returns:
176
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
177
+ """
178
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
179
+ # ourselves in which case we just need to make it broadcastable to all heads.
180
+ if attention_mask.dim() == 3:
181
+ extended_attention_mask = attention_mask[:, None, :, :]
182
+ elif attention_mask.dim() == 2:
183
+ # Provided a padding mask of dimensions [batch_size, seq_length]
184
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
185
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
186
+ if is_decoder:
187
+ batch_size, seq_length = input_shape
188
+
189
+ seq_ids = torch.arange(seq_length, device=device)
190
+ causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
191
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
192
+ # causal and attention masks must have same type with pytorch version < 1.3
193
+ causal_mask = causal_mask.to(attention_mask.dtype)
194
+
195
+ if causal_mask.shape[1] < attention_mask.shape[1]:
196
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
197
+ causal_mask = torch.cat(
198
+ [
199
+ torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
200
+ causal_mask,
201
+ ],
202
+ axis=-1,
203
+ )
204
+
205
+ extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
206
+ else:
207
+ extended_attention_mask = attention_mask[:, None, None, :]
208
+ else:
209
+ raise ValueError(
210
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
211
+ input_shape, attention_mask.shape
212
+ )
213
+ )
214
+
215
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
216
+ # masked positions, this operation will create a tensor which is 0.0 for
217
+ # positions we want to attend and -10000.0 for masked positions.
218
+ # Since we are adding it to the raw scores before the softmax, this is
219
+ # effectively the same as removing these entirely.
220
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
221
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
222
+ return extended_attention_mask
223
+
224
+ def forward(
225
+ self,
226
+ input_ids=None,
227
+ attention_mask=None,
228
+ position_ids=None,
229
+ head_mask=None,
230
+ inputs_embeds=None,
231
+ encoder_embeds=None,
232
+ encoder_hidden_states=None,
233
+ encoder_attention_mask=None,
234
+ past_key_values=None,
235
+ use_cache=None,
236
+ output_attentions=None,
237
+ output_hidden_states=None,
238
+ return_dict=None,
239
+ is_decoder=False,
240
+ mode='multimodal',
241
+ ):
242
+ r"""
243
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
244
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
245
+ the model is configured as a decoder.
246
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
247
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
248
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
249
+ - 1 for tokens that are **not masked**,
250
+ - 0 for tokens that are **masked**.
251
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
252
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
253
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
254
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
255
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
256
+ use_cache (:obj:`bool`, `optional`):
257
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
258
+ decoding (see :obj:`past_key_values`).
259
+ """
260
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
261
+ output_hidden_states = (
262
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
263
+ )
264
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
265
+
266
+ if is_decoder:
267
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
268
+ else:
269
+ use_cache = False
270
+
271
+ if input_ids is not None and inputs_embeds is not None:
272
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
273
+ elif input_ids is not None:
274
+ input_shape = input_ids.size()
275
+ batch_size, seq_length = input_shape
276
+ device = input_ids.device
277
+ elif inputs_embeds is not None:
278
+ input_shape = inputs_embeds.size()[:-1]
279
+ batch_size, seq_length = input_shape
280
+ device = inputs_embeds.device
281
+ elif encoder_embeds is not None:
282
+ input_shape = encoder_embeds.size()[:-1]
283
+ batch_size, seq_length = input_shape
284
+ device = encoder_embeds.device
285
+ else:
286
+ raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
287
+
288
+ # past_key_values_length
289
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
290
+
291
+ if attention_mask is None:
292
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
293
+
294
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
295
+ # ourselves in which case we just need to make it broadcastable to all heads.
296
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
297
+ device, is_decoder)
298
+
299
+ # If a 2D or 3D attention mask is provided for the cross-attention
300
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
301
+ if encoder_hidden_states is not None:
302
+ if type(encoder_hidden_states) == list:
303
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
304
+ else:
305
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
306
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
307
+
308
+ if type(encoder_attention_mask) == list:
309
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
310
+ elif encoder_attention_mask is None:
311
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
312
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
313
+ else:
314
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
315
+ else:
316
+ encoder_extended_attention_mask = None
317
+
318
+ # Prepare head mask if needed
319
+ # 1.0 in head_mask indicate we keep the head
320
+ # attention_probs has shape bsz x n_heads x N x N
321
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
322
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
323
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
324
+
325
+ if encoder_embeds is None:
326
+ embedding_output = self.embeddings(
327
+ input_ids=input_ids,
328
+ position_ids=position_ids,
329
+ inputs_embeds=inputs_embeds,
330
+ past_key_values_length=past_key_values_length,
331
+ )
332
+ else:
333
+ embedding_output = encoder_embeds
334
+
335
+ encoder_outputs = self.encoder(
336
+ embedding_output,
337
+ attention_mask=extended_attention_mask,
338
+ head_mask=head_mask,
339
+ encoder_hidden_states=encoder_hidden_states,
340
+ encoder_attention_mask=encoder_extended_attention_mask,
341
+ past_key_values=past_key_values,
342
+ use_cache=use_cache,
343
+ output_attentions=output_attentions,
344
+ output_hidden_states=output_hidden_states,
345
+ return_dict=return_dict,
346
+ mode=mode,
347
+ )
348
+ sequence_output = encoder_outputs[0]
349
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
350
+
351
+ if not return_dict:
352
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
353
+
354
+ return BaseModelOutputWithPoolingAndCrossAttentions(
355
+ last_hidden_state=sequence_output,
356
+ pooler_output=pooled_output,
357
+ past_key_values=encoder_outputs.past_key_values,
358
+ hidden_states=encoder_outputs.hidden_states,
359
+ attentions=encoder_outputs.attentions,
360
+ cross_attentions=encoder_outputs.cross_attentions,
361
+ )
362
+
363
+
364
+ class MMSEG_UPerHead(nn.Module):
365
+ """Wraps the UPerHead from mmseg for segmentation.
366
+ """
367
+
368
+ def __init__(self, num_classes: int,
369
+ in_channels: list = [384, 384, 384, 384], channels: int = 512):
370
+ super().__init__()
371
+
372
+ from mmseg.models.decode_heads import UPerHead
373
+ self.head = UPerHead(
374
+ in_channels=in_channels,
375
+ in_index=[0, 1, 2, 3],
376
+ pool_scales=(1, 2, 3, 6),
377
+ channels=channels,
378
+ dropout_ratio=0.1,
379
+ num_classes=num_classes,
380
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
381
+ align_corners=False,
382
+ loss_decode=dict(
383
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
384
+
385
+ def forward(self, inputs):
386
+ return self.head(inputs)
387
+
388
+
389
+ def _make_fpns(vision_patch_size: int, output_channels: int):
390
+ if vision_patch_size in {16, 14}:
391
+ fpn1 = nn.Sequential(
392
+ nn.ConvTranspose2d(output_channels, output_channels,
393
+ kernel_size=2, stride=2),
394
+ nn.SyncBatchNorm(output_channels),
395
+ nn.GELU(),
396
+ nn.ConvTranspose2d(output_channels, output_channels, kernel_size=2, stride=2))
397
+
398
+ fpn2 = nn.ConvTranspose2d(
399
+ output_channels, output_channels, kernel_size=2, stride=2)
400
+ fpn3 = nn.Identity()
401
+ fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
402
+ return nn.ModuleList([fpn1, fpn2, fpn3, fpn4])
403
+
404
+ elif vision_patch_size == 8:
405
+ fpn1 = nn.Sequential(nn.ConvTranspose2d(
406
+ output_channels, output_channels, kernel_size=2, stride=2))
407
+ fpn2 = nn.Identity()
408
+ fpn3 = nn.MaxPool2d(kernel_size=2, stride=2)
409
+ fpn4 = nn.MaxPool2d(kernel_size=4, stride=4)
410
+ return nn.ModuleList([fpn1, fpn2, fpn3, fpn4])
411
+ else:
412
+ raise NotImplementedError()
413
+
414
+
415
+ def is_url(url_or_filename):
416
+ parsed = urlparse(url_or_filename)
417
+ return parsed.scheme in ("http", "https")
418
+
419
+
420
+ def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
421
+ # interpolate position embedding
422
+ embedding_size = pos_embed_checkpoint.shape[-1]
423
+ num_patches = visual_encoder.vision_model.embeddings.num_patches
424
+ num_extra_tokens = visual_encoder.vision_model.embeddings.position_embedding.weight.shape[-2] - num_patches
425
+ # height (== width) for the checkpoint position embedding
426
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
427
+ # height (== width) for the new position embedding
428
+ new_size = int(num_patches ** 0.5)
429
+
430
+ if orig_size!=new_size:
431
+ # class_token and dist_token are kept unchanged
432
+ extra_tokens = pos_embed_checkpoint[:num_extra_tokens, :]
433
+ # only the position tokens are interpolated
434
+ pos_tokens = pos_embed_checkpoint[num_extra_tokens:, :]
435
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
436
+ pos_tokens = torch.nn.functional.interpolate(
437
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
438
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2).squeeze(0)
439
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=0)
440
+ print('reshape position embedding from %d to %d'%(orig_size ** 2, new_size ** 2))
441
+ return new_pos_embed
442
+ else:
443
+ return pos_embed_checkpoint
444
+
445
+
446
+ def load_checkpoint(model,url_or_filename):
447
+ if is_url(url_or_filename):
448
+ cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
449
+ checkpoint = torch.load(cached_file, map_location='cpu')
450
+ elif os.path.isfile(url_or_filename):
451
+ checkpoint = torch.load(url_or_filename, map_location='cpu')
452
+ else:
453
+ raise RuntimeError('checkpoint url or path is invalid')
454
+
455
+ state_dict = checkpoint['model']
456
+
457
+ state_dict['visual_encoder.vision_model.embeddings.position_embedding.weight'] = interpolate_pos_embed(state_dict['visual_encoder.vision_model.embeddings.position_embedding.weight'], model.visual_encoder)
458
+ if hasattr(model, " visual_encoder_m") and 'visual_encoder.vision_model.embeddings.position_embedding.weight' in model.state_dict().keys():
459
+ state_dict['visual_encoder.vision_model.embeddings.position_embedding.weight'] = interpolate_pos_embed(state_dict['visual_encoder.vision_model.embeddings.position_embedding.weight'],
460
+ model.visual_encoder_m)
461
+ for key in model.state_dict().keys():
462
+ if key in state_dict.keys():
463
+ if state_dict[key].shape!=model.state_dict()[key].shape:
464
+ del state_dict[key]
465
+
466
+ msg = model.load_state_dict(state_dict,strict=False)
467
+ print('load checkpoint from %s'%url_or_filename)
468
+ return model, msg
models/fflip_pretrain.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ '''
8
+ import transformers
9
+ transformers.logging.set_verbosity_error()
10
+ import os
11
+ from models.fflip import (
12
+ VisionConfig,
13
+ VisionModel,
14
+ BertModel,
15
+ BertConfig,
16
+ init_tokenizer,
17
+ load_checkpoint)
18
+
19
+ import torch
20
+ from torch import nn
21
+ import torch.nn.functional as F
22
+ from torch.cuda.amp import GradScaler, autocast
23
+
24
+
25
+ class FFLIP_Pretrain(nn.Module):
26
+ def __init__(self,
27
+ config = './configs/',
28
+ vit = 'base',
29
+ embed_dim = 256,
30
+ queue_size = 57600,
31
+ momentum = 0.995
32
+ ):
33
+ """
34
+ Args:
35
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
36
+ image_size (int): input image size
37
+ vit (str): model size of vision transformer
38
+ """
39
+ super().__init__()
40
+ if vit == 'base':
41
+ self.vision_config = VisionConfig().from_json_file(os.path.join(config, 'vision_config.json'))
42
+ self.visual_encoder = VisionModel.from_pretrained("openai/clip-vit-base-patch16", config = self.vision_config)
43
+ elif vit == 'large':
44
+ self.vision_config = VisionConfig().from_json_file(os.path.join(config, 'vision_config.json'))
45
+ self.visual_encoder = VisionModel.from_pretrained("openai/clip-vit-large-patch14", config = self.vision_config)
46
+ vision_width = self.visual_encoder.config.hidden_size
47
+
48
+ self.tokenizer = init_tokenizer()
49
+ encoder_config = BertConfig.from_json_file(os.path.join(config, 'bert_config.json'))
50
+ encoder_config.encoder_width = vision_width
51
+ self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
52
+ self.text_encoder.resize_token_embeddings(len(self.tokenizer))
53
+ text_width = self.text_encoder.config.hidden_size
54
+
55
+ self.vision_proj = nn.Linear(vision_width, embed_dim)
56
+ self.text_proj = nn.Linear(text_width, embed_dim)
57
+
58
+ self.itm_head = nn.Linear(text_width, 2)
59
+
60
+ # create momentum encoders
61
+ self.visual_encoder_m = VisionModel(config = self.vision_config)
62
+ self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)
63
+ self.text_encoder_m.resize_token_embeddings(len(self.tokenizer))
64
+ self.vision_proj_m = nn.Linear(vision_width, embed_dim)
65
+ self.text_proj_m = nn.Linear(text_width, embed_dim)
66
+
67
+ self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
68
+ [self.vision_proj,self.vision_proj_m],
69
+ [self.text_encoder,self.text_encoder_m],
70
+ [self.text_proj,self.text_proj_m],
71
+ ]
72
+ self.copy_params()
73
+
74
+ # create the queue
75
+ self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
76
+ self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
77
+ self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
78
+ self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
79
+
80
+ self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
81
+ self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
82
+
83
+ self.queue_size = queue_size
84
+ self.momentum = momentum
85
+ self.temp = nn.Parameter(0.07*torch.ones([]))
86
+
87
+
88
+ def forward(self, image, caption, alpha, idx):
89
+ self.train()
90
+ with torch.no_grad():
91
+ self.temp.clamp_(0.001,0.5)
92
+
93
+ text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=65,
94
+ return_tensors="pt").to(image.device)
95
+
96
+ with autocast():
97
+ image_output = self.visual_encoder(image)
98
+ image_embeds = image_output.last_hidden_state
99
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
100
+ image_feat = F.normalize(self.vision_proj(image_output.last_hidden_state[:,0,:]), dim=-1)
101
+
102
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
103
+ return_dict = True, mode = 'text')
104
+ text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
105
+
106
+ idx = idx.view(-1,1)
107
+ idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
108
+ pos_idx = torch.eq(idx, idx_all).float()
109
+
110
+ # get momentum features
111
+ with torch.no_grad():
112
+ self._momentum_update()
113
+ image_output_m = self.visual_encoder_m(image)
114
+ image_feat_m = F.normalize(self.vision_proj_m(image_output_m.last_hidden_state[:,0,:]), dim=-1)
115
+ image_feat_all = torch.cat([image_feat_m.t(), self.image_queue.clone().detach()], dim=1)
116
+
117
+ text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
118
+ return_dict = True, mode = 'text')
119
+ text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
120
+ text_feat_all = torch.cat([text_feat_m.t(), self.text_queue.clone().detach()],dim=1)
121
+
122
+ # print(sim_t2i_m.shape)
123
+ sim_i2t_m = image_feat_m @ text_feat_all / self.temp
124
+ sim_t2i_m = text_feat_m @ image_feat_all / self.temp
125
+
126
+ sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
127
+ sim_targets.fill_diagonal_(1)
128
+
129
+ sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
130
+ sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
131
+
132
+ sim_i2t = image_feat @ text_feat_all / self.temp
133
+ sim_t2i = text_feat @ image_feat_all / self.temp
134
+
135
+ loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
136
+ loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
137
+
138
+ loss_ita = (loss_i2t + loss_t2i)/2
139
+ idxs = concat_all_gather(idx)
140
+ self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
141
+
142
+ ###============== Image-text Matching ===================###
143
+ encoder_input_ids = text.input_ids.clone()
144
+ encoder_input_ids[:,0] = self.tokenizer.enc_token_id
145
+
146
+ # forward the positve image-text pair
147
+ bs = image.size(0)
148
+ output_pos = self.text_encoder(encoder_input_ids,
149
+ attention_mask = text.attention_mask,
150
+ encoder_hidden_states = image_embeds,
151
+ encoder_attention_mask = image_atts,
152
+ return_dict = True,
153
+ )
154
+ # compute sample similarity
155
+ with torch.no_grad():
156
+ mask = torch.eq(idx, idxs.t())
157
+
158
+ image_feat_world = concat_all_gather(image_feat)
159
+ text_feat_world = concat_all_gather(text_feat)
160
+
161
+ sim_i2t = image_feat @ text_feat_world.t() / self.temp
162
+ sim_t2i = text_feat @ image_feat_world.t() / self.temp
163
+
164
+ weights_i2t = F.softmax(sim_i2t,dim=1)
165
+ weights_i2t.masked_fill_(mask, 0)
166
+
167
+ weights_t2i = F.softmax(sim_t2i,dim=1)
168
+ weights_t2i.masked_fill_(mask, 0)
169
+
170
+ image_embeds_world = all_gather_with_grad(image_embeds)
171
+
172
+ # select a negative image (from all ranks) for each text
173
+ image_embeds_neg = []
174
+ for b in range(bs):
175
+ neg_idx = torch.multinomial(weights_t2i[b], 1).item()
176
+ image_embeds_neg.append(image_embeds_world[neg_idx])
177
+ image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
178
+
179
+ # select a negative text (from all ranks) for each image
180
+ input_ids_world = concat_all_gather(encoder_input_ids)
181
+ att_mask_world = concat_all_gather(text.attention_mask)
182
+
183
+ text_ids_neg = []
184
+ text_atts_neg = []
185
+ for b in range(bs):
186
+ neg_idx = torch.multinomial(weights_i2t[b], 1).item()
187
+ text_ids_neg.append(input_ids_world[neg_idx])
188
+ text_atts_neg.append(att_mask_world[neg_idx])
189
+
190
+ text_ids_neg = torch.stack(text_ids_neg,dim=0)
191
+ text_atts_neg = torch.stack(text_atts_neg,dim=0)
192
+
193
+ text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
194
+ text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
195
+
196
+ image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
197
+ image_atts_all = torch.cat([image_atts,image_atts],dim=0)
198
+
199
+ output_neg = self.text_encoder(text_ids_all,
200
+ attention_mask = text_atts_all,
201
+ encoder_hidden_states = image_embeds_all,
202
+ encoder_attention_mask = image_atts_all,
203
+ return_dict = True,
204
+ )
205
+
206
+ vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
207
+ vl_output = self.itm_head(vl_embeddings)
208
+
209
+ itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
210
+ dim=0).to(image.device)
211
+ loss_itm = F.cross_entropy(vl_output, itm_labels)
212
+
213
+ return loss_ita, loss_itm
214
+
215
+
216
+
217
+ @torch.no_grad()
218
+ def copy_params(self):
219
+ for model_pair in self.model_pairs:
220
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
221
+ param_m.data.copy_(param.data) # initialize
222
+ param_m.requires_grad = False # not update by gradient
223
+
224
+
225
+ @torch.no_grad()
226
+ def _momentum_update(self):
227
+ for model_pair in self.model_pairs:
228
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
229
+ param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
230
+
231
+
232
+ @torch.no_grad()
233
+ def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
234
+ # gather keys before updating queue
235
+ image_feats = concat_all_gather(image_feat)
236
+ text_feats = concat_all_gather(text_feat)
237
+
238
+ batch_size = image_feats.shape[0]
239
+
240
+ ptr = int(self.ptr_queue)
241
+ assert self.queue_size % batch_size == 0 # for simplicity
242
+
243
+ # replace the keys at ptr (dequeue and enqueue)
244
+ self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
245
+ self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
246
+ self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
247
+ ptr = (ptr + batch_size) % self.queue_size # move pointer
248
+
249
+ self.ptr_queue[0] = ptr
250
+
251
+
252
+
253
+ def fflip_pretrain(pretrained='', **kwargs):
254
+ model = FFLIP_Pretrain(**kwargs)
255
+ if pretrained:
256
+ model, msg = load_checkpoint(model, pretrained)
257
+ print("missing keys:")
258
+ print(msg.missing_keys)
259
+ return model
260
+
261
+
262
+ @torch.no_grad()
263
+ def concat_all_gather(tensor):
264
+ """
265
+ Performs all_gather operation on the provided tensors.
266
+ *** Warning ***: torch.distributed.all_gather has no gradient.
267
+ """
268
+ if torch.distributed.is_initialized():
269
+ tensors_gather = [torch.ones_like(tensor)
270
+ for _ in range(torch.distributed.get_world_size())]
271
+ torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
272
+
273
+ output = torch.cat(tensors_gather, dim=0)
274
+ else:
275
+ output = tensor.clone()
276
+
277
+ return output
278
+
279
+
280
+ class GatherLayer(torch.autograd.Function):
281
+ """
282
+ Gather tensors from all workers with support for backward propagation:
283
+ This implementation does not cut the gradients as torch.distributed.all_gather does.
284
+ """
285
+
286
+ @staticmethod
287
+ def forward(ctx, x):
288
+ output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
289
+ torch.distributed.all_gather(output, x)
290
+ return tuple(output)
291
+
292
+ @staticmethod
293
+ def backward(ctx, *grads):
294
+ all_gradients = torch.stack(grads)
295
+ torch.distributed.all_reduce(all_gradients)
296
+ return all_gradients[torch.distributed.get_rank()]
297
+
298
+
299
+ def all_gather_with_grad(tensors):
300
+ """
301
+ Performs all_gather operation on the provided tensors.
302
+ Graph remains connected for backward grad computation.
303
+ """
304
+ # Queue the gathered tensors
305
+ world_size = 1
306
+ if torch.distributed.is_initialized():
307
+ world_size = torch.distributed.get_world_size()
308
+ # There is no need for reduction in the single-proc case
309
+ if world_size == 1:
310
+ return tensors
311
+
312
+ tensor_all = GatherLayer.apply(tensors)
313
+
314
+ return torch.cat(tensor_all, dim=0)
models/mm.py ADDED
@@ -0,0 +1,1652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ @file mm.py
3
+ @brief This file contains the code for the multimodal model. It is a modified version of the CLIP model from the huggingface transformers library.
4
+ @author yutangli
5
+ """
6
+ import torch
7
+ from torch.nn import CrossEntropyLoss
8
+ from transformers.configuration_utils import PretrainedConfig
9
+ from transformers.models.clip.configuration_clip import CLIPConfig
10
+ from transformers.modeling_utils import PreTrainedModel
11
+ from transformers.activations import ACT2FN
12
+ from transformers.utils import logging, ModelOutput
13
+ from typing import Optional, Union, Tuple, Dict
14
+ import math
15
+ from dataclasses import dataclass
16
+
17
+ from torch import Tensor, device, dtype, nn
18
+
19
+ from transformers.modeling_utils import (
20
+ PreTrainedModel,
21
+ apply_chunking_to_forward,
22
+ find_pruneable_heads_and_indices,
23
+ prune_linear_layer,
24
+ )
25
+
26
+ from transformers.modeling_outputs import (
27
+ BaseModelOutputWithPastAndCrossAttentions,
28
+ BaseModelOutputWithPoolingAndCrossAttentions,
29
+ CausalLMOutputWithCrossAttentions,
30
+ MaskedLMOutput,
31
+ MultipleChoiceModelOutput,
32
+ NextSentencePredictorOutput,
33
+ QuestionAnsweringModelOutput,
34
+ SequenceClassifierOutput,
35
+ TokenClassifierOutput,
36
+ )
37
+
38
+ from transformers.models.bert.configuration_bert import BertConfig
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+
43
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
44
+ def _make_causal_mask(
45
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
46
+ ):
47
+ """
48
+ Make causal mask used for bi-directional self-attention.
49
+ """
50
+ bsz, tgt_len = input_ids_shape
51
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
52
+ mask_cond = torch.arange(mask.size(-1), device=device)
53
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
54
+ mask = mask.to(dtype)
55
+
56
+ if past_key_values_length > 0:
57
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
58
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
59
+
60
+
61
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
62
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
63
+ """
64
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
65
+ """
66
+ bsz, src_len = mask.size()
67
+ tgt_len = tgt_len if tgt_len is not None else src_len
68
+
69
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
70
+
71
+ inverted_mask = 1.0 - expanded_mask
72
+
73
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
74
+
75
+
76
+ @dataclass
77
+ class BaseModelOutput(ModelOutput):
78
+ """
79
+ Base class for model's outputs, with potential hidden states and attentions.
80
+
81
+ Args:
82
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
83
+ Sequence of hidden-states at the output of the last layer of the model.
84
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
85
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
86
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
87
+
88
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
89
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
90
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
91
+ sequence_length)`.
92
+
93
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
94
+ heads.
95
+ """
96
+
97
+ last_hidden_state: torch.FloatTensor = None
98
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
99
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
100
+ intermediate_hidden_state: Optional[Dict[str, torch.FloatTensor]] = None
101
+
102
+ @dataclass
103
+ class BaseModelOutputWithPooling(ModelOutput):
104
+ """
105
+ Base class for model's outputs that also contains a pooling of the last hidden states.
106
+
107
+ Args:
108
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
109
+ Sequence of hidden-states at the output of the last layer of the model.
110
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
111
+ Last layer hidden-state of the first token of the sequence (classification token) after further processing
112
+ through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
113
+ the classification token after processing through a linear layer and a tanh activation function. The linear
114
+ layer weights are trained from the next sentence prediction (classification) objective during pretraining.
115
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
116
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
117
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
118
+
119
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
120
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
121
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
122
+ sequence_length)`.
123
+
124
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
125
+ heads.
126
+ """
127
+
128
+ last_hidden_state: torch.FloatTensor = None
129
+ pooler_output: torch.FloatTensor = None
130
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
131
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
132
+ intermediate_hidden_state: Optional[Dict[str, torch.FloatTensor]] = None
133
+
134
+
135
+ class BertConfig(PretrainedConfig):
136
+ r"""
137
+ This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
138
+ instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
139
+ configuration with the defaults will yield a similar configuration to that of the BERT
140
+ [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
141
+
142
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
143
+ documentation from [`PretrainedConfig`] for more information.
144
+
145
+
146
+ Args:
147
+ vocab_size (`int`, *optional*, defaults to 30522):
148
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
149
+ `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
150
+ hidden_size (`int`, *optional*, defaults to 768):
151
+ Dimensionality of the encoder layers and the pooler layer.
152
+ num_hidden_layers (`int`, *optional*, defaults to 12):
153
+ Number of hidden layers in the Transformer encoder.
154
+ num_attention_heads (`int`, *optional*, defaults to 12):
155
+ Number of attention heads for each attention layer in the Transformer encoder.
156
+ intermediate_size (`int`, *optional*, defaults to 3072):
157
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
158
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
159
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
160
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
161
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
162
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
163
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
164
+ The dropout ratio for the attention probabilities.
165
+ max_position_embeddings (`int`, *optional*, defaults to 512):
166
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
167
+ just in case (e.g., 512 or 1024 or 2048).
168
+ type_vocab_size (`int`, *optional*, defaults to 2):
169
+ The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
170
+ initializer_range (`float`, *optional*, defaults to 0.02):
171
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
172
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
173
+ The epsilon used by the layer normalization layers.
174
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
175
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
176
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
177
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
178
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
179
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
180
+ is_decoder (`bool`, *optional*, defaults to `False`):
181
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
182
+ use_cache (`bool`, *optional*, defaults to `True`):
183
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
184
+ relevant if `config.is_decoder=True`.
185
+ classifier_dropout (`float`, *optional*):
186
+ The dropout ratio for the classification head.
187
+
188
+ Examples:
189
+
190
+ ```python
191
+ >>> from transformers import BertConfig, BertModel
192
+
193
+ >>> # Initializing a BERT bert-base-uncased style configuration
194
+ >>> configuration = BertConfig()
195
+
196
+ >>> # Initializing a model (with random weights) from the bert-base-uncased style configuration
197
+ >>> model = BertModel(configuration)
198
+
199
+ >>> # Accessing the model configuration
200
+ >>> configuration = model.config
201
+ ```"""
202
+ model_type = "bert"
203
+
204
+ def __init__(
205
+ self,
206
+ vocab_size=30522,
207
+ hidden_size=768,
208
+ num_hidden_layers=12,
209
+ num_attention_heads=12,
210
+ intermediate_size=3072,
211
+ hidden_act="gelu",
212
+ hidden_dropout_prob=0.1,
213
+ attention_probs_dropout_prob=0.1,
214
+ max_position_embeddings=512,
215
+ type_vocab_size=2,
216
+ initializer_range=0.02,
217
+ layer_norm_eps=1e-12,
218
+ pad_token_id=0,
219
+ position_embedding_type="absolute",
220
+ use_cache=True,
221
+ classifier_dropout=None,
222
+ **kwargs,
223
+ ):
224
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
225
+
226
+ self.vocab_size = vocab_size
227
+ self.hidden_size = hidden_size
228
+ self.num_hidden_layers = num_hidden_layers
229
+ self.num_attention_heads = num_attention_heads
230
+ self.hidden_act = hidden_act
231
+ self.intermediate_size = intermediate_size
232
+ self.hidden_dropout_prob = hidden_dropout_prob
233
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
234
+ self.max_position_embeddings = max_position_embeddings
235
+ self.type_vocab_size = type_vocab_size
236
+ self.initializer_range = initializer_range
237
+ self.layer_norm_eps = layer_norm_eps
238
+ self.position_embedding_type = position_embedding_type
239
+ self.use_cache = use_cache
240
+ self.classifier_dropout = classifier_dropout
241
+
242
+
243
+ class VisionConfig(PretrainedConfig):
244
+ r"""
245
+ This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
246
+ CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
247
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
248
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
249
+
250
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
251
+ documentation from [`PretrainedConfig`] for more information.
252
+
253
+ Args:
254
+ hidden_size (`int`, *optional*, defaults to 768):
255
+ Dimensionality of the encoder layers and the pooler layer.
256
+ intermediate_size (`int`, *optional*, defaults to 3072):
257
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
258
+ num_hidden_layers (`int`, *optional*, defaults to 12):
259
+ Number of hidden layers in the Transformer encoder.
260
+ num_attention_heads (`int`, *optional*, defaults to 12):
261
+ Number of attention heads for each attention layer in the Transformer encoder.
262
+ image_size (`int`, *optional*, defaults to 224):
263
+ The size (resolution) of each image.
264
+ patch_size (`int`, *optional*, defaults to 32):
265
+ The size (resolution) of each patch.
266
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
267
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
268
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
269
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
270
+ The epsilon used by the layer normalization layers.
271
+ attention_dropout (`float`, *optional*, defaults to 0.0):
272
+ The dropout ratio for the attention probabilities.
273
+ initializer_range (`float`, *optional*, defaults to 0.02):
274
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
275
+ initializer_factor (`float`, *optional*, defaults to 1):
276
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
277
+ testing).
278
+
279
+ Example:
280
+
281
+ ```python
282
+ >>> from transformers import CLIPVisionConfig, CLIPVisionModel
283
+
284
+ >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
285
+ >>> configuration = CLIPVisionConfig()
286
+
287
+ >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
288
+ >>> model = CLIPVisionModel(configuration)
289
+
290
+ >>> # Accessing the model configuration
291
+ >>> configuration = model.config
292
+ ```"""
293
+
294
+ model_type = "clip_vision_model"
295
+
296
+ def __init__(
297
+ self,
298
+ hidden_size=768,
299
+ intermediate_size=3072,
300
+ projection_dim=512,
301
+ num_hidden_layers=12,
302
+ num_attention_heads=12,
303
+ num_channels=3,
304
+ image_size=224,
305
+ patch_size=32,
306
+ hidden_act="quick_gelu",
307
+ layer_norm_eps=1e-5,
308
+ attention_dropout=0.0,
309
+ initializer_range=0.02,
310
+ initializer_factor=1.0,
311
+ intermediate_transformer_output = [4, 6, 8],
312
+ **kwargs,
313
+ ):
314
+ super().__init__(**kwargs)
315
+
316
+ self.hidden_size = hidden_size
317
+ self.intermediate_size = intermediate_size
318
+ self.projection_dim = projection_dim
319
+ self.intermediate_transformer_output = intermediate_transformer_output
320
+ self.num_hidden_layers = num_hidden_layers
321
+ self.num_attention_heads = num_attention_heads
322
+ self.num_channels = num_channels
323
+ self.patch_size = patch_size
324
+ self.image_size = image_size
325
+ self.initializer_range = initializer_range
326
+ self.initializer_factor = initializer_factor
327
+ self.attention_dropout = attention_dropout
328
+ self.layer_norm_eps = layer_norm_eps
329
+ self.hidden_act = hidden_act
330
+
331
+
332
+ class BertEmbeddings(nn.Module):
333
+ """Construct the embeddings from word and position embeddings."""
334
+
335
+ def __init__(self, config):
336
+ super().__init__()
337
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
338
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
339
+
340
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
341
+ # any TensorFlow checkpoint file
342
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
343
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
344
+
345
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
346
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
347
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
348
+
349
+ self.config = config
350
+
351
+ def forward(
352
+ self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
353
+ ):
354
+ if input_ids is not None:
355
+ input_shape = input_ids.size()
356
+ else:
357
+ input_shape = inputs_embeds.size()[:-1]
358
+
359
+ seq_length = input_shape[1]
360
+
361
+ if position_ids is None:
362
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
363
+
364
+ if inputs_embeds is None:
365
+ inputs_embeds = self.word_embeddings(input_ids)
366
+
367
+ embeddings = inputs_embeds
368
+
369
+ if self.position_embedding_type == "absolute":
370
+ position_embeddings = self.position_embeddings(position_ids)
371
+ embeddings += position_embeddings
372
+ embeddings = self.LayerNorm(embeddings)
373
+ embeddings = self.dropout(embeddings)
374
+ return embeddings
375
+
376
+
377
+ class VisionEmbeddings(nn.Module):
378
+ def __init__(self, config: VisionConfig):
379
+ super().__init__()
380
+ self.config = config
381
+ self.embed_dim = config.hidden_size
382
+ self.image_size = config.image_size
383
+ self.patch_size = config.patch_size
384
+
385
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
386
+
387
+ self.patch_embedding = nn.Conv2d(
388
+ in_channels=config.num_channels,
389
+ out_channels=self.embed_dim,
390
+ kernel_size=self.patch_size,
391
+ stride=self.patch_size,
392
+ bias=False,
393
+ )
394
+
395
+ self.num_patches = (self.image_size // self.patch_size) ** 2
396
+ self.num_positions = self.num_patches + 1
397
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
398
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
399
+
400
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
401
+ batch_size = pixel_values.shape[0]
402
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
403
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
404
+
405
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
406
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
407
+ embeddings = embeddings + self.position_embedding(self.position_ids)
408
+ return embeddings
409
+
410
+
411
+ class BertSelfAttention(nn.Module):
412
+ def __init__(self, config, is_cross_attention):
413
+ super().__init__()
414
+ self.config = config
415
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
416
+ raise ValueError(
417
+ "The hidden size (%d) is not a multiple of the number of attention "
418
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
419
+ )
420
+
421
+ self.num_attention_heads = config.num_attention_heads
422
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
423
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
424
+
425
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
426
+ if is_cross_attention:
427
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
428
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
429
+ else:
430
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
431
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
432
+
433
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
434
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
435
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
436
+ self.max_position_embeddings = config.max_position_embeddings
437
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
438
+ self.save_attention = False
439
+
440
+ def save_attn_gradients(self, attn_gradients):
441
+ self.attn_gradients = attn_gradients
442
+
443
+ def get_attn_gradients(self):
444
+ return self.attn_gradients
445
+
446
+ def save_attention_map(self, attention_map):
447
+ self.attention_map = attention_map
448
+
449
+ def get_attention_map(self):
450
+ return self.attention_map
451
+
452
+ def transpose_for_scores(self, x):
453
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
454
+ x = x.view(*new_x_shape)
455
+ return x.permute(0, 2, 1, 3)
456
+
457
+ def forward(
458
+ self,
459
+ hidden_states,
460
+ attention_mask=None,
461
+ head_mask=None,
462
+ encoder_hidden_states=None,
463
+ encoder_attention_mask=None,
464
+ past_key_value=None,
465
+ output_attentions=False,
466
+ ):
467
+ mixed_query_layer = self.query(hidden_states)
468
+
469
+ # If this is instantiated as a cross-attention module, the keys
470
+ # and values come from an encoder; the attention mask needs to be
471
+ # such that the encoder's padding tokens are not attended to.
472
+ is_cross_attention = encoder_hidden_states is not None
473
+
474
+ if is_cross_attention:
475
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
476
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
477
+ attention_mask = encoder_attention_mask
478
+ elif past_key_value is not None:
479
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
480
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
481
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
482
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
483
+ else:
484
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
485
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
486
+
487
+ query_layer = self.transpose_for_scores(mixed_query_layer)
488
+
489
+ past_key_value = (key_layer, value_layer)
490
+
491
+ # Take the dot product between "query" and "key" to get the raw attention scores.
492
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
493
+
494
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
495
+ seq_length = hidden_states.size()[1]
496
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
497
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
498
+ distance = position_ids_l - position_ids_r
499
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
500
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
501
+
502
+ if self.position_embedding_type == "relative_key":
503
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
504
+ attention_scores = attention_scores + relative_position_scores
505
+ elif self.position_embedding_type == "relative_key_query":
506
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
507
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
508
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
509
+
510
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
511
+ if attention_mask is not None:
512
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
513
+ attention_scores = attention_scores + attention_mask
514
+
515
+ # Normalize the attention scores to probabilities.
516
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
517
+
518
+ if is_cross_attention and self.save_attention:
519
+ self.save_attention_map(attention_probs)
520
+ attention_probs.register_hook(self.save_attn_gradients)
521
+
522
+ # This is actually dropping out entire tokens to attend to, which might
523
+ # seem a bit unusual, but is taken from the original Transformer paper.
524
+ attention_probs_dropped = self.dropout(attention_probs)
525
+
526
+ # Mask heads if we want to
527
+ if head_mask is not None:
528
+ attention_probs_dropped = attention_probs_dropped * head_mask
529
+
530
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
531
+
532
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
533
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
534
+ context_layer = context_layer.view(*new_context_layer_shape)
535
+
536
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
537
+
538
+ outputs = outputs + (past_key_value,)
539
+ return outputs
540
+
541
+
542
+ class BertSelfOutput(nn.Module):
543
+ def __init__(self, config):
544
+ super().__init__()
545
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
546
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
547
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
548
+
549
+ def forward(self, hidden_states, input_tensor):
550
+ hidden_states = self.dense(hidden_states)
551
+ hidden_states = self.dropout(hidden_states)
552
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
553
+ return hidden_states
554
+
555
+
556
+ class BertAttention(nn.Module):
557
+ def __init__(self, config, is_cross_attention=False):
558
+ super().__init__()
559
+ self.self = BertSelfAttention(config, is_cross_attention)
560
+ self.output = BertSelfOutput(config)
561
+ self.pruned_heads = set()
562
+
563
+ def prune_heads(self, heads):
564
+ if len(heads) == 0:
565
+ return
566
+ heads, index = find_pruneable_heads_and_indices(
567
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
568
+ )
569
+
570
+ # Prune linear layers
571
+ self.self.query = prune_linear_layer(self.self.query, index)
572
+ self.self.key = prune_linear_layer(self.self.key, index)
573
+ self.self.value = prune_linear_layer(self.self.value, index)
574
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
575
+
576
+ # Update hyper params and store pruned heads
577
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
578
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
579
+ self.pruned_heads = self.pruned_heads.union(heads)
580
+
581
+ def forward(
582
+ self,
583
+ hidden_states,
584
+ attention_mask=None,
585
+ head_mask=None,
586
+ encoder_hidden_states=None,
587
+ encoder_attention_mask=None,
588
+ past_key_value=None,
589
+ output_attentions=False,
590
+ ):
591
+ self_outputs = self.self(
592
+ hidden_states,
593
+ attention_mask,
594
+ head_mask,
595
+ encoder_hidden_states,
596
+ encoder_attention_mask,
597
+ past_key_value,
598
+ output_attentions,
599
+ )
600
+ attention_output = self.output(self_outputs[0], hidden_states)
601
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
602
+ return outputs
603
+
604
+
605
+ class BertIntermediate(nn.Module):
606
+ def __init__(self, config):
607
+ super().__init__()
608
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
609
+ if isinstance(config.hidden_act, str):
610
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
611
+ else:
612
+ self.intermediate_act_fn = config.hidden_act
613
+
614
+ def forward(self, hidden_states):
615
+ hidden_states = self.dense(hidden_states)
616
+ hidden_states = self.intermediate_act_fn(hidden_states)
617
+ return hidden_states
618
+
619
+
620
+ class BertOutput(nn.Module):
621
+ def __init__(self, config):
622
+ super().__init__()
623
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
624
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
625
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
626
+
627
+ def forward(self, hidden_states, input_tensor):
628
+ hidden_states = self.dense(hidden_states)
629
+ hidden_states = self.dropout(hidden_states)
630
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
631
+ return hidden_states
632
+
633
+
634
+ class Attention(nn.Module):
635
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
636
+
637
+ def __init__(self, config):
638
+ super().__init__()
639
+ self.config = config
640
+ self.embed_dim = config.hidden_size
641
+ self.num_heads = config.num_attention_heads
642
+ self.head_dim = self.embed_dim // self.num_heads
643
+ if self.head_dim * self.num_heads != self.embed_dim:
644
+ raise ValueError(
645
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
646
+ f" {self.num_heads})."
647
+ )
648
+ self.scale = self.head_dim**-0.5
649
+ self.dropout = config.attention_dropout
650
+
651
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
652
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
653
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
654
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
655
+
656
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
657
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
658
+
659
+ def forward(
660
+ self,
661
+ hidden_states: torch.Tensor,
662
+ attention_mask: Optional[torch.Tensor] = None,
663
+ causal_attention_mask: Optional[torch.Tensor] = None,
664
+ output_attentions: Optional[bool] = False,
665
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
666
+ """Input shape: Batch x Time x Channel"""
667
+
668
+ bsz, tgt_len, embed_dim = hidden_states.size()
669
+
670
+ # get query proj
671
+ query_states = self.q_proj(hidden_states) * self.scale
672
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
673
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
674
+
675
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
676
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
677
+ key_states = key_states.view(*proj_shape)
678
+ value_states = value_states.view(*proj_shape)
679
+
680
+ src_len = key_states.size(1)
681
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
682
+
683
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
684
+ raise ValueError(
685
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
686
+ f" {attn_weights.size()}"
687
+ )
688
+
689
+ # apply the causal_attention_mask first
690
+ if causal_attention_mask is not None:
691
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
692
+ raise ValueError(
693
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
694
+ f" {causal_attention_mask.size()}"
695
+ )
696
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
697
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
698
+
699
+ if attention_mask is not None:
700
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
701
+ raise ValueError(
702
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
703
+ )
704
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
705
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
706
+
707
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
708
+
709
+ if output_attentions:
710
+ # this operation is a bit akward, but it's required to
711
+ # make sure that attn_weights keeps its gradient.
712
+ # In order to do so, attn_weights have to reshaped
713
+ # twice and have to be reused in the following
714
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
715
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
716
+ else:
717
+ attn_weights_reshaped = None
718
+
719
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
720
+
721
+ attn_output = torch.bmm(attn_probs, value_states)
722
+
723
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
724
+ raise ValueError(
725
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
726
+ f" {attn_output.size()}"
727
+ )
728
+
729
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
730
+ attn_output = attn_output.transpose(1, 2)
731
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
732
+
733
+ attn_output = self.out_proj(attn_output)
734
+
735
+ return attn_output, attn_weights_reshaped
736
+
737
+
738
+ class MLP(nn.Module):
739
+ def __init__(self, config):
740
+ super().__init__()
741
+ self.config = config
742
+ self.activation_fn = ACT2FN[config.hidden_act]
743
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
744
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
745
+
746
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
747
+ hidden_states = self.fc1(hidden_states)
748
+ hidden_states = self.activation_fn(hidden_states)
749
+ hidden_states = self.fc2(hidden_states)
750
+ return hidden_states
751
+
752
+
753
+ class EncoderLayer(nn.Module):
754
+ def __init__(self, config: CLIPConfig):
755
+ super().__init__()
756
+ self.embed_dim = config.hidden_size
757
+ self.self_attn = Attention(config)
758
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
759
+ self.mlp = MLP(config)
760
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
761
+
762
+ def forward(
763
+ self,
764
+ hidden_states: torch.Tensor,
765
+ attention_mask: torch.Tensor,
766
+ causal_attention_mask: torch.Tensor,
767
+ output_attentions: Optional[bool] = False,
768
+ ) -> Tuple[torch.FloatTensor]:
769
+ """
770
+ Args:
771
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
772
+ attention_mask (`torch.FloatTensor`): attention mask of size
773
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
774
+ `(config.encoder_attention_heads,)`.
775
+ output_attentions (`bool`, *optional*):
776
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
777
+ returned tensors for more detail.
778
+ """
779
+ residual = hidden_states
780
+
781
+ hidden_states = self.layer_norm1(hidden_states)
782
+ hidden_states, attn_weights = self.self_attn(
783
+ hidden_states=hidden_states,
784
+ attention_mask=attention_mask,
785
+ causal_attention_mask=causal_attention_mask,
786
+ output_attentions=output_attentions,
787
+ )
788
+ hidden_states = residual + hidden_states
789
+
790
+ residual = hidden_states
791
+ hidden_states = self.layer_norm2(hidden_states)
792
+ hidden_states = self.mlp(hidden_states)
793
+ hidden_states = residual + hidden_states
794
+
795
+ outputs = (hidden_states,)
796
+
797
+ if output_attentions:
798
+ outputs += (attn_weights,)
799
+
800
+ return outputs
801
+
802
+
803
+ class BertLayer(nn.Module):
804
+ def __init__(self, config, layer_num):
805
+ super().__init__()
806
+ self.config = config
807
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
808
+ self.seq_len_dim = 1
809
+ self.attention = BertAttention(config)
810
+ self.layer_num = layer_num
811
+ if self.config.add_cross_attention:
812
+ self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
813
+ self.intermediate = BertIntermediate(config)
814
+ self.output = BertOutput(config)
815
+
816
+ def forward(
817
+ self,
818
+ hidden_states,
819
+ attention_mask=None,
820
+ head_mask=None,
821
+ encoder_hidden_states=None,
822
+ encoder_attention_mask=None,
823
+ past_key_value=None,
824
+ output_attentions=False,
825
+ mode=None,
826
+ ):
827
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
828
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
829
+ self_attention_outputs = self.attention(
830
+ hidden_states,
831
+ attention_mask,
832
+ head_mask,
833
+ output_attentions=output_attentions,
834
+ past_key_value=self_attn_past_key_value,
835
+ )
836
+ attention_output = self_attention_outputs[0]
837
+
838
+ outputs = self_attention_outputs[1:-1]
839
+ present_key_value = self_attention_outputs[-1]
840
+
841
+ if mode=='multimodal':
842
+ assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
843
+
844
+ cross_attention_outputs = self.crossattention(
845
+ attention_output,
846
+ attention_mask,
847
+ head_mask,
848
+ encoder_hidden_states,
849
+ encoder_attention_mask,
850
+ output_attentions=output_attentions,
851
+ )
852
+ attention_output = cross_attention_outputs[0]
853
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
854
+ layer_output = apply_chunking_to_forward(
855
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
856
+ )
857
+ outputs = (layer_output,) + outputs
858
+
859
+ outputs = outputs + (present_key_value,)
860
+
861
+ return outputs
862
+
863
+ def feed_forward_chunk(self, attention_output):
864
+ intermediate_output = self.intermediate(attention_output)
865
+ layer_output = self.output(intermediate_output, attention_output)
866
+ return layer_output
867
+
868
+
869
+ class VisionEncoder(nn.Module):
870
+ """
871
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
872
+ [`CLIPEncoderLayer`].
873
+
874
+ Args:
875
+ config: CLIPConfig
876
+ """
877
+
878
+ def __init__(self, config: VisionConfig):
879
+ super().__init__()
880
+ self.config = config
881
+ self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
882
+ self.gradient_checkpointing = False
883
+
884
+ def forward(
885
+ self,
886
+ inputs_embeds,
887
+ attention_mask: Optional[torch.Tensor] = None,
888
+ causal_attention_mask: Optional[torch.Tensor] = None,
889
+ output_attentions: Optional[bool] = None,
890
+ output_hidden_states: Optional[bool] = None,
891
+ return_dict: Optional[bool] = None,
892
+ intermediate_hidden_state: Optional[bool] = None
893
+ ) -> Union[Tuple, BaseModelOutput]:
894
+ r"""
895
+ Args:
896
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
897
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
898
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
899
+ than the model's internal embedding lookup matrix.
900
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
901
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
902
+
903
+ - 1 for tokens that are **not masked**,
904
+ - 0 for tokens that are **masked**.
905
+
906
+ [What are attention masks?](../glossary#attention-mask)
907
+ causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
908
+ Causal mask for the text model. Mask values selected in `[0, 1]`:
909
+
910
+ - 1 for tokens that are **not masked**,
911
+ - 0 for tokens that are **masked**.
912
+
913
+ [What are attention masks?](../glossary#attention-mask)
914
+ output_attentions (`bool`, *optional*):
915
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
916
+ returned tensors for more detail.
917
+ output_hidden_states (`bool`, *optional*):
918
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
919
+ for more detail.
920
+ return_dict (`bool`, *optional*):
921
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
922
+ """
923
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
924
+ output_hidden_states = (
925
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
926
+ )
927
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
928
+
929
+ encoder_states = () if output_hidden_states else None
930
+ all_attentions = () if output_attentions else None
931
+ intermediate_hidden_state = {} if intermediate_hidden_state else None
932
+
933
+ hidden_states = inputs_embeds
934
+ for idx, encoder_layer in enumerate(self.layers):
935
+ if output_hidden_states:
936
+ encoder_states = encoder_states + (hidden_states,)
937
+ if self.gradient_checkpointing and self.training:
938
+
939
+ def create_custom_forward(module):
940
+ def custom_forward(*inputs):
941
+ return module(*inputs, output_attentions)
942
+
943
+ return custom_forward
944
+
945
+ layer_outputs = torch.utils.checkpoint.checkpoint(
946
+ create_custom_forward(encoder_layer),
947
+ hidden_states,
948
+ attention_mask,
949
+ causal_attention_mask,
950
+ )
951
+ else:
952
+ layer_outputs = encoder_layer(
953
+ hidden_states,
954
+ attention_mask,
955
+ causal_attention_mask,
956
+ output_attentions=output_attentions,
957
+ )
958
+
959
+ hidden_states = layer_outputs[0]
960
+
961
+ if intermediate_hidden_state is not None and (idx+1) in self.config.intermediate_transformer_output:
962
+ key = 'layer_'+str(idx)
963
+ intermediate_hidden_state[key] = layer_outputs[0]
964
+
965
+ if output_attentions:
966
+ all_attentions = all_attentions + (layer_outputs[1],)
967
+
968
+ if output_hidden_states:
969
+ encoder_states = encoder_states + (hidden_states,)
970
+
971
+ if not return_dict:
972
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
973
+ return BaseModelOutput(
974
+ last_hidden_state=hidden_states, intermediate_hidden_state=intermediate_hidden_state, hidden_states=encoder_states, attentions=all_attentions
975
+ )
976
+
977
+
978
+ class BertEncoder(nn.Module):
979
+ def __init__(self, config):
980
+ super().__init__()
981
+ self.config = config
982
+ self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
983
+ self.gradient_checkpointing = False
984
+
985
+ def forward(
986
+ self,
987
+ hidden_states,
988
+ attention_mask=None,
989
+ head_mask=None,
990
+ encoder_hidden_states=None,
991
+ encoder_attention_mask=None,
992
+ past_key_values=None,
993
+ use_cache=None,
994
+ output_attentions=False,
995
+ output_hidden_states=False,
996
+ return_dict=True,
997
+ mode='multimodal',
998
+ ):
999
+ all_hidden_states = () if output_hidden_states else None
1000
+ all_self_attentions = () if output_attentions else None
1001
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
1002
+
1003
+ next_decoder_cache = () if use_cache else None
1004
+
1005
+ for i in range(self.config.num_hidden_layers):
1006
+ layer_module = self.layer[i]
1007
+ if output_hidden_states:
1008
+ all_hidden_states = all_hidden_states + (hidden_states,)
1009
+
1010
+ layer_head_mask = head_mask[i] if head_mask is not None else None
1011
+ past_key_value = past_key_values[i] if past_key_values is not None else None
1012
+
1013
+ if self.gradient_checkpointing and self.training:
1014
+
1015
+ if use_cache:
1016
+ logger.warn(
1017
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1018
+ )
1019
+ use_cache = False
1020
+
1021
+ def create_custom_forward(module):
1022
+ def custom_forward(*inputs):
1023
+ return module(*inputs, past_key_value, output_attentions)
1024
+
1025
+ return custom_forward
1026
+
1027
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1028
+ create_custom_forward(layer_module),
1029
+ hidden_states,
1030
+ attention_mask,
1031
+ layer_head_mask,
1032
+ encoder_hidden_states,
1033
+ encoder_attention_mask,
1034
+ mode=mode,
1035
+ )
1036
+ else:
1037
+ layer_outputs = layer_module(
1038
+ hidden_states,
1039
+ attention_mask,
1040
+ layer_head_mask,
1041
+ encoder_hidden_states,
1042
+ encoder_attention_mask,
1043
+ past_key_value,
1044
+ output_attentions,
1045
+ mode=mode,
1046
+ )
1047
+
1048
+ hidden_states = layer_outputs[0]
1049
+ if use_cache:
1050
+ next_decoder_cache += (layer_outputs[-1],)
1051
+ if output_attentions:
1052
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
1053
+
1054
+ if output_hidden_states:
1055
+ all_hidden_states = all_hidden_states + (hidden_states,)
1056
+
1057
+ if not return_dict:
1058
+ return tuple(
1059
+ v
1060
+ for v in [
1061
+ hidden_states,
1062
+ next_decoder_cache,
1063
+ all_hidden_states,
1064
+ all_self_attentions,
1065
+ all_cross_attentions,
1066
+ ]
1067
+ if v is not None
1068
+ )
1069
+ return BaseModelOutputWithPastAndCrossAttentions(
1070
+ last_hidden_state=hidden_states,
1071
+ past_key_values=next_decoder_cache,
1072
+ hidden_states=all_hidden_states,
1073
+ attentions=all_self_attentions,
1074
+ cross_attentions=all_cross_attentions,
1075
+ )
1076
+
1077
+
1078
+ class VisionTransformer(nn.Module):
1079
+ def __init__(self, config: VisionConfig):
1080
+ super().__init__()
1081
+ self.config = config
1082
+ embed_dim = config.hidden_size
1083
+
1084
+ self.embeddings = VisionEmbeddings(config)
1085
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1086
+ self.encoder = VisionEncoder(config)
1087
+ self.post_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1088
+
1089
+ def forward(
1090
+ self,
1091
+ pixel_values: Optional[torch.FloatTensor] = None,
1092
+ output_attentions: Optional[bool] = None,
1093
+ output_hidden_states: Optional[bool] = None,
1094
+ return_dict: Optional[bool] = None,
1095
+ intermediate_hidden_state: Optional[bool] = None
1096
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1097
+ r"""
1098
+ Returns:
1099
+
1100
+ """
1101
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1102
+ output_hidden_states = (
1103
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1104
+ )
1105
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1106
+
1107
+ if pixel_values is None:
1108
+ raise ValueError("You have to specify pixel_values")
1109
+
1110
+ hidden_states = self.embeddings(pixel_values)
1111
+ hidden_states = self.pre_layrnorm(hidden_states)
1112
+
1113
+ encoder_outputs = self.encoder(
1114
+ inputs_embeds=hidden_states,
1115
+ output_attentions=output_attentions,
1116
+ output_hidden_states=output_hidden_states,
1117
+ return_dict=return_dict,
1118
+ intermediate_hidden_state=intermediate_hidden_state
1119
+ )
1120
+
1121
+ last_hidden_state = self.post_layrnorm(encoder_outputs[0])
1122
+ pooled_output = last_hidden_state[:, 0, :]
1123
+
1124
+ if not return_dict:
1125
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
1126
+
1127
+ return BaseModelOutputWithPooling(
1128
+ last_hidden_state=last_hidden_state,
1129
+ pooler_output=pooled_output,
1130
+ hidden_states=encoder_outputs.hidden_states,
1131
+ attentions=encoder_outputs.attentions,
1132
+ intermediate_hidden_state=encoder_outputs.intermediate_hidden_state
1133
+ )
1134
+
1135
+
1136
+ class BertPooler(nn.Module):
1137
+ def __init__(self, config):
1138
+ super().__init__()
1139
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1140
+ self.activation = nn.Tanh()
1141
+
1142
+ def forward(self, hidden_states):
1143
+ # We "pool" the model by simply taking the hidden state corresponding
1144
+ # to the first token.
1145
+ first_token_tensor = hidden_states[:, 0]
1146
+ pooled_output = self.dense(first_token_tensor)
1147
+ pooled_output = self.activation(pooled_output)
1148
+ return pooled_output
1149
+
1150
+
1151
+ class BertPredictionHeadTransform(nn.Module):
1152
+ def __init__(self, config):
1153
+ super().__init__()
1154
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1155
+ if isinstance(config.hidden_act, str):
1156
+ self.transform_act_fn = ACT2FN[config.hidden_act]
1157
+ else:
1158
+ self.transform_act_fn = config.hidden_act
1159
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1160
+
1161
+ def forward(self, hidden_states):
1162
+ hidden_states = self.dense(hidden_states)
1163
+ hidden_states = self.transform_act_fn(hidden_states)
1164
+ hidden_states = self.LayerNorm(hidden_states)
1165
+ return hidden_states
1166
+
1167
+
1168
+ class BertLMPredictionHead(nn.Module):
1169
+ def __init__(self, config):
1170
+ super().__init__()
1171
+ self.transform = BertPredictionHeadTransform(config)
1172
+
1173
+ # The output weights are the same as the input embeddings, but there is
1174
+ # an output-only bias for each token.
1175
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1176
+
1177
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
1178
+
1179
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
1180
+ self.decoder.bias = self.bias
1181
+
1182
+ def forward(self, hidden_states):
1183
+ hidden_states = self.transform(hidden_states)
1184
+ hidden_states = self.decoder(hidden_states)
1185
+ return hidden_states
1186
+
1187
+
1188
+ class BertOnlyMLMHead(nn.Module):
1189
+ def __init__(self, config):
1190
+ super().__init__()
1191
+ self.predictions = BertLMPredictionHead(config)
1192
+
1193
+ def forward(self, sequence_output):
1194
+ prediction_scores = self.predictions(sequence_output)
1195
+ return prediction_scores
1196
+
1197
+
1198
+ class VisionTrainedModel(PreTrainedModel):
1199
+ """
1200
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1201
+ models.
1202
+ """
1203
+
1204
+ # config_class = CLIPConfig
1205
+ # base_model_prefix = "clip"
1206
+ supports_gradient_checkpointing = True
1207
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
1208
+
1209
+ def _init_weights(self, module):
1210
+ """Initialize the weights"""
1211
+ factor = self.config.initializer_factor
1212
+ if isinstance(module, VisionEmbeddings):
1213
+ factor = self.config.initializer_factor
1214
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
1215
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
1216
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
1217
+ elif isinstance(module, Attention):
1218
+ factor = self.config.initializer_factor
1219
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
1220
+ out_proj_std = (module.embed_dim**-0.5) * factor
1221
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
1222
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
1223
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
1224
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
1225
+ elif isinstance(module, MLP):
1226
+ factor = self.config.initializer_factor
1227
+ in_proj_std = (
1228
+ (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
1229
+ )
1230
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
1231
+ nn.init.normal_(module.fc1.weight, std=fc_std)
1232
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
1233
+
1234
+ if isinstance(module, nn.LayerNorm):
1235
+ module.bias.data.zero_()
1236
+ module.weight.data.fill_(1.0)
1237
+ if isinstance(module, nn.Linear) and module.bias is not None:
1238
+ module.bias.data.zero_()
1239
+
1240
+ def _set_gradient_checkpointing(self, module, value=False):
1241
+ if isinstance(module, VisionEncoder):
1242
+ module.gradient_checkpointing = value
1243
+
1244
+
1245
+ class BertPreTrainedModel(PreTrainedModel):
1246
+ """
1247
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1248
+ models.
1249
+ """
1250
+
1251
+ config_class = BertConfig
1252
+ base_model_prefix = "bert"
1253
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
1254
+
1255
+ def _init_weights(self, module):
1256
+ """ Initialize the weights """
1257
+ if isinstance(module, (nn.Linear, nn.Embedding)):
1258
+ # Slightly different from the TF version which uses truncated_normal for initialization
1259
+ # cf https://github.com/pytorch/pytorch/pull/5617
1260
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1261
+ elif isinstance(module, nn.LayerNorm):
1262
+ module.bias.data.zero_()
1263
+ module.weight.data.fill_(1.0)
1264
+ if isinstance(module, nn.Linear) and module.bias is not None:
1265
+ module.bias.data.zero_()
1266
+
1267
+
1268
+ class BertModel(BertPreTrainedModel):
1269
+ """
1270
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1271
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
1272
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
1273
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
1274
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
1275
+ input to the forward pass.
1276
+ """
1277
+
1278
+ def __init__(self, config, add_pooling_layer=True):
1279
+ super().__init__(config)
1280
+ self.config = config
1281
+
1282
+ self.embeddings = BertEmbeddings(config)
1283
+
1284
+ self.encoder = BertEncoder(config)
1285
+
1286
+ self.pooler = BertPooler(config) if add_pooling_layer else None
1287
+
1288
+ self.init_weights()
1289
+
1290
+
1291
+ def get_input_embeddings(self):
1292
+ return self.embeddings.word_embeddings
1293
+
1294
+ def set_input_embeddings(self, value):
1295
+ self.embeddings.word_embeddings = value
1296
+
1297
+ def _prune_heads(self, heads_to_prune):
1298
+ """
1299
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1300
+ class PreTrainedModel
1301
+ """
1302
+ for layer, heads in heads_to_prune.items():
1303
+ self.encoder.layer[layer].attention.prune_heads(heads)
1304
+
1305
+
1306
+ def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
1307
+ """
1308
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
1309
+
1310
+ Arguments:
1311
+ attention_mask (:obj:`torch.Tensor`):
1312
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
1313
+ input_shape (:obj:`Tuple[int]`):
1314
+ The shape of the input to the model.
1315
+ device: (:obj:`torch.device`):
1316
+ The device of the input to the model.
1317
+
1318
+ Returns:
1319
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
1320
+ """
1321
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1322
+ # ourselves in which case we just need to make it broadcastable to all heads.
1323
+ if attention_mask.dim() == 3:
1324
+ extended_attention_mask = attention_mask[:, None, :, :]
1325
+ elif attention_mask.dim() == 2:
1326
+ # Provided a padding mask of dimensions [batch_size, seq_length]
1327
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
1328
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
1329
+ if is_decoder:
1330
+ batch_size, seq_length = input_shape
1331
+
1332
+ seq_ids = torch.arange(seq_length, device=device)
1333
+ causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
1334
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
1335
+ # causal and attention masks must have same type with pytorch version < 1.3
1336
+ causal_mask = causal_mask.to(attention_mask.dtype)
1337
+
1338
+ if causal_mask.shape[1] < attention_mask.shape[1]:
1339
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
1340
+ causal_mask = torch.cat(
1341
+ [
1342
+ torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
1343
+ causal_mask,
1344
+ ],
1345
+ axis=-1,
1346
+ )
1347
+
1348
+ extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
1349
+ else:
1350
+ extended_attention_mask = attention_mask[:, None, None, :]
1351
+ else:
1352
+ raise ValueError(
1353
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
1354
+ input_shape, attention_mask.shape
1355
+ )
1356
+ )
1357
+
1358
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
1359
+ # masked positions, this operation will create a tensor which is 0.0 for
1360
+ # positions we want to attend and -10000.0 for masked positions.
1361
+ # Since we are adding it to the raw scores before the softmax, this is
1362
+ # effectively the same as removing these entirely.
1363
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
1364
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
1365
+ return extended_attention_mask
1366
+
1367
+ def forward(
1368
+ self,
1369
+ input_ids=None,
1370
+ attention_mask=None,
1371
+ position_ids=None,
1372
+ head_mask=None,
1373
+ inputs_embeds=None,
1374
+ encoder_embeds=None,
1375
+ encoder_hidden_states=None,
1376
+ encoder_attention_mask=None,
1377
+ past_key_values=None,
1378
+ use_cache=None,
1379
+ output_attentions=None,
1380
+ output_hidden_states=None,
1381
+ return_dict=None,
1382
+ is_decoder=False,
1383
+ mode='multimodal',
1384
+ ):
1385
+ r"""
1386
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1387
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1388
+ the model is configured as a decoder.
1389
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1390
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1391
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
1392
+ - 1 for tokens that are **not masked**,
1393
+ - 0 for tokens that are **masked**.
1394
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1395
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1396
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
1397
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
1398
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
1399
+ use_cache (:obj:`bool`, `optional`):
1400
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
1401
+ decoding (see :obj:`past_key_values`).
1402
+ """
1403
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1404
+ output_hidden_states = (
1405
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1406
+ )
1407
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1408
+
1409
+ if is_decoder:
1410
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1411
+ else:
1412
+ use_cache = False
1413
+
1414
+ if input_ids is not None and inputs_embeds is not None:
1415
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1416
+ elif input_ids is not None:
1417
+ input_shape = input_ids.size()
1418
+ batch_size, seq_length = input_shape
1419
+ device = input_ids.device
1420
+ elif inputs_embeds is not None:
1421
+ input_shape = inputs_embeds.size()[:-1]
1422
+ batch_size, seq_length = input_shape
1423
+ device = inputs_embeds.device
1424
+ elif encoder_embeds is not None:
1425
+ input_shape = encoder_embeds.size()[:-1]
1426
+ batch_size, seq_length = input_shape
1427
+ device = encoder_embeds.device
1428
+ else:
1429
+ raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
1430
+
1431
+ # past_key_values_length
1432
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1433
+
1434
+ if attention_mask is None:
1435
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
1436
+
1437
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1438
+ # ourselves in which case we just need to make it broadcastable to all heads.
1439
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
1440
+ device, is_decoder)
1441
+
1442
+ # If a 2D or 3D attention mask is provided for the cross-attention
1443
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1444
+ if encoder_hidden_states is not None:
1445
+ if type(encoder_hidden_states) == list:
1446
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
1447
+ else:
1448
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
1449
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1450
+
1451
+ if type(encoder_attention_mask) == list:
1452
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
1453
+ elif encoder_attention_mask is None:
1454
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1455
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1456
+ else:
1457
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1458
+ else:
1459
+ encoder_extended_attention_mask = None
1460
+
1461
+ # Prepare head mask if needed
1462
+ # 1.0 in head_mask indicate we keep the head
1463
+ # attention_probs has shape bsz x n_heads x N x N
1464
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1465
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1466
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1467
+
1468
+ if encoder_embeds is None:
1469
+ embedding_output = self.embeddings(
1470
+ input_ids=input_ids,
1471
+ position_ids=position_ids,
1472
+ inputs_embeds=inputs_embeds,
1473
+ past_key_values_length=past_key_values_length,
1474
+ )
1475
+ else:
1476
+ embedding_output = encoder_embeds
1477
+
1478
+ encoder_outputs = self.encoder(
1479
+ embedding_output,
1480
+ attention_mask=extended_attention_mask,
1481
+ head_mask=head_mask,
1482
+ encoder_hidden_states=encoder_hidden_states,
1483
+ encoder_attention_mask=encoder_extended_attention_mask,
1484
+ past_key_values=past_key_values,
1485
+ use_cache=use_cache,
1486
+ output_attentions=output_attentions,
1487
+ output_hidden_states=output_hidden_states,
1488
+ return_dict=return_dict,
1489
+ mode=mode,
1490
+ )
1491
+ sequence_output = encoder_outputs[0]
1492
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1493
+
1494
+ if not return_dict:
1495
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1496
+
1497
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1498
+ last_hidden_state=sequence_output,
1499
+ pooler_output=pooled_output,
1500
+ past_key_values=encoder_outputs.past_key_values,
1501
+ hidden_states=encoder_outputs.hidden_states,
1502
+ attentions=encoder_outputs.attentions,
1503
+ cross_attentions=encoder_outputs.cross_attentions,
1504
+ )
1505
+
1506
+
1507
+
1508
+ class BertLMHeadModel(BertPreTrainedModel):
1509
+
1510
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
1511
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
1512
+
1513
+ def __init__(self, config):
1514
+ super().__init__(config)
1515
+
1516
+ self.bert = BertModel(config, add_pooling_layer=False)
1517
+ self.cls = BertOnlyMLMHead(config)
1518
+
1519
+ self.init_weights()
1520
+
1521
+ def get_output_embeddings(self):
1522
+ return self.cls.predictions.decoder
1523
+
1524
+ def set_output_embeddings(self, new_embeddings):
1525
+ self.cls.predictions.decoder = new_embeddings
1526
+
1527
+ def forward(
1528
+ self,
1529
+ input_ids=None,
1530
+ attention_mask=None,
1531
+ position_ids=None,
1532
+ head_mask=None,
1533
+ inputs_embeds=None,
1534
+ encoder_hidden_states=None,
1535
+ encoder_attention_mask=None,
1536
+ labels=None,
1537
+ past_key_values=None,
1538
+ use_cache=None,
1539
+ output_attentions=None,
1540
+ output_hidden_states=None,
1541
+ return_dict=None,
1542
+ return_logits=False,
1543
+ is_decoder=True,
1544
+ reduction='mean',
1545
+ mode='multimodal',
1546
+ ):
1547
+ r"""
1548
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1549
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1550
+ the model is configured as a decoder.
1551
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1552
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1553
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
1554
+ - 1 for tokens that are **not masked**,
1555
+ - 0 for tokens that are **masked**.
1556
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1557
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1558
+ ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
1559
+ ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
1560
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1561
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1562
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
1563
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
1564
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
1565
+ use_cache (:obj:`bool`, `optional`):
1566
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
1567
+ decoding (see :obj:`past_key_values`).
1568
+ Returns:
1569
+ Example::
1570
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
1571
+ >>> import torch
1572
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
1573
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
1574
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
1575
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1576
+ >>> outputs = model(**inputs)
1577
+ >>> prediction_logits = outputs.logits
1578
+ """
1579
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1580
+ if labels is not None:
1581
+ use_cache = False
1582
+
1583
+ outputs = self.bert(
1584
+ input_ids,
1585
+ attention_mask=attention_mask,
1586
+ position_ids=position_ids,
1587
+ head_mask=head_mask,
1588
+ inputs_embeds=inputs_embeds,
1589
+ encoder_hidden_states=encoder_hidden_states,
1590
+ encoder_attention_mask=encoder_attention_mask,
1591
+ past_key_values=past_key_values,
1592
+ use_cache=use_cache,
1593
+ output_attentions=output_attentions,
1594
+ output_hidden_states=output_hidden_states,
1595
+ return_dict=return_dict,
1596
+ is_decoder=is_decoder,
1597
+ mode=mode,
1598
+ )
1599
+
1600
+ sequence_output = outputs[0]
1601
+ prediction_scores = self.cls(sequence_output)
1602
+
1603
+ if return_logits:
1604
+ return prediction_scores[:, :-1, :].contiguous()
1605
+
1606
+ lm_loss = None
1607
+ if labels is not None:
1608
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1609
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1610
+ labels = labels[:, 1:].contiguous()
1611
+ loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
1612
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1613
+ if reduction=='none':
1614
+ lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
1615
+
1616
+ if not return_dict:
1617
+ output = (prediction_scores,) + outputs[2:]
1618
+ return ((lm_loss,) + output) if lm_loss is not None else output
1619
+
1620
+ return CausalLMOutputWithCrossAttentions(
1621
+ loss=lm_loss,
1622
+ logits=prediction_scores,
1623
+ past_key_values=outputs.past_key_values,
1624
+ hidden_states=outputs.hidden_states,
1625
+ attentions=outputs.attentions,
1626
+ cross_attentions=outputs.cross_attentions,
1627
+ )
1628
+
1629
+ def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
1630
+ input_shape = input_ids.shape
1631
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1632
+ if attention_mask is None:
1633
+ attention_mask = input_ids.new_ones(input_shape)
1634
+
1635
+ # cut decoder_input_ids if past is used
1636
+ if past is not None:
1637
+ input_ids = input_ids[:, -1:]
1638
+
1639
+ return {
1640
+ "input_ids": input_ids,
1641
+ "attention_mask": attention_mask,
1642
+ "past_key_values": past,
1643
+ "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
1644
+ "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
1645
+ "is_decoder": True,
1646
+ }
1647
+
1648
+ def _reorder_cache(self, past, beam_idx):
1649
+ reordered_past = ()
1650
+ for layer_past in past:
1651
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
1652
+ return reordered_past
models/utils.py ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple, Union
2
+ import torch
3
+ import torch.nn.functional as F
4
+ # from .p2i_ops import p2i
5
+ import math
6
+ from torch import nn
7
+
8
+
9
+ def resize_embedding(embedding_layer, new_size, num_tokens=1, mode='bicubic'):
10
+ """Resize the position embedding in an nn.Embedding layer.
11
+
12
+ Args:
13
+ embedding_layer (nn.Embedding): The embedding layer to resize.
14
+ new_size (int): The new size for the positional embedding.
15
+ num_tokens (int): The number of special tokens (e.g., CLS token).
16
+ mode (str): The interpolation mode.
17
+
18
+ Returns:
19
+ nn.Embedding: A new embedding layer with resized position embedding.
20
+ """
21
+ # Extract weights from the original embedding layer
22
+ original_weights = embedding_layer.weight.data
23
+
24
+ # Resize the weights using the provided function
25
+ resized_weights = _resize_pe(original_weights, new_size, mode, num_tokens)
26
+
27
+ # Create a new embedding layer and initialize it with the resized weights
28
+ new_embedding_layer = nn.Embedding(resized_weights.size(0), resized_weights.size(1))
29
+ new_embedding_layer.weight.data = resized_weights
30
+
31
+ return new_embedding_layer
32
+
33
+
34
+ def _resize_pe(pe: torch.Tensor, new_size: int, mode: str = 'bicubic', num_tokens: int = 1) -> torch.Tensor:
35
+ """Resize positional embeddings.
36
+
37
+ Args:
38
+ pe (torch.Tensor): A tensor with shape (num_tokens + old_size ** 2, width). pe[0, :] is the CLS token.
39
+
40
+ Returns:
41
+ torch.Tensor: A tensor with shape (num_tokens + new_size **2, width).
42
+ """
43
+ l, w = pe.shape
44
+ old_size = int(math.sqrt(l-num_tokens))
45
+ assert old_size ** 2 + num_tokens == l
46
+ return torch.cat([
47
+ pe[:num_tokens, :],
48
+ F.interpolate(pe[num_tokens:, :].reshape(1, old_size, old_size, w).permute(0, 3, 1, 2),
49
+ (new_size, new_size), mode=mode, align_corners=False).view(w, -1).t()], dim=0)
50
+
51
+
52
+ def normalize_points(points: torch.Tensor, h: int, w: int) -> torch.Tensor:
53
+ """ Normalize coordinates to [0, 1].
54
+ """
55
+ return (points + 0.5) / torch.tensor([[[w, h]]]).to(points)
56
+
57
+ def denormalize_points(normalized_points: torch.Tensor, h: int, w: int) -> torch.Tensor:
58
+ """ Reverse normalize_points.
59
+ """
60
+ return normalized_points * torch.tensor([[[w, h]]]).to(normalized_points) - 0.5
61
+
62
+ # def points2heatmap(normalized_points, heatmap_size: Tuple[int, int], kernel_radius: float):
63
+ # """ Normalized points [b x npoints x 2(XY)] -> heatmaps.
64
+ # """
65
+ # batch, npoints, _ = normalized_points.shape
66
+ # out_h, out_w = heatmap_size
67
+
68
+ # points = denormalize_points(normalized_points, out_h, out_w)
69
+
70
+ # # (batch x npoints) x 1 x h x w
71
+ # heatmap = torch.zeros(
72
+ # batch * npoints, 1, out_h, out_w).to(points)
73
+ # # (batch x npoints) x 2
74
+ # points_flatten = points.view(-1, 2)
75
+ # # (batch x npoints)
76
+ # batch_inds = torch.arange(
77
+ # batch * npoints, dtype=torch.int32).cuda()
78
+ # # (batch x npoints) x 1
79
+ # points_color = torch.ones(
80
+ # points_flatten.size(0), 1).to(points_flatten)
81
+ # # (batch x npoints) x 1 x h x w
82
+ # heatmap = p2i(points_flatten, points_color, batch_inds=batch_inds, background=heatmap,
83
+ # kernel_radius=kernel_radius,
84
+ # kernel_kind_str='gaussian_awing', reduce='max')
85
+ # # batch x npoints x h x w
86
+ # heatmap = heatmap.reshape(batch, npoints, out_h, out_w)
87
+ # return heatmap
88
+
89
+ def heatmap2points(heatmap, t_scale: Union[None, float, torch.Tensor] = None):
90
+ """ Heatmaps -> normalized points [b x npoints x 2(XY)].
91
+ """
92
+ dtype = heatmap.dtype
93
+ _, _, h, w = heatmap.shape
94
+
95
+ # 0 ~ h-1, 0 ~ w-1
96
+ yy, xx = torch.meshgrid(
97
+ torch.arange(h).float(),
98
+ torch.arange(w).float())
99
+
100
+ yy = yy.view(1, 1, h, w).to(heatmap)
101
+ xx = xx.view(1, 1, h, w).to(heatmap)
102
+
103
+ if t_scale is not None:
104
+ heatmap = (heatmap * t_scale).exp()
105
+ heatmap_sum = torch.clamp(heatmap.sum([2, 3]), min=1e-6)
106
+
107
+ yy_coord = (yy * heatmap).sum([2, 3]) / heatmap_sum # b x npoints
108
+ xx_coord = (xx * heatmap).sum([2, 3]) / heatmap_sum # b x npoints
109
+
110
+ points = torch.stack([xx_coord, yy_coord], dim=-1) # b x npoints x 2
111
+
112
+ normalized_points = normalize_points(points, h, w)
113
+ return normalized_points
114
+
115
+
116
+ def _expand_as_rgbs(x):
117
+ _, c, _, _ = x.shape
118
+ if c == 3:
119
+ return [x]
120
+
121
+ if c % 3 > 0:
122
+ x = torch.cat([
123
+ x, x[:, [-1], :, :].expand(
124
+ -1, 3 - c % 3, -1, -1)], dim=1)
125
+ c = x.size(1)
126
+ assert c % 3 == 0
127
+ return list(x.split([3] * (c // 3), dim=1))
128
+
129
+
130
+ def _visualize_flags(flags, size, num_flags):
131
+ batch_size = flags.size(0)
132
+ flags = flags.to(dtype=torch.uint8)
133
+ has_what = [flags & torch.full_like(flags, 1 << i)
134
+ for i in range(num_flags)]
135
+ # batch x 1 x 1 x 4
136
+ vis_im = torch.stack(has_what, dim=1).float().view(
137
+ batch_size, 1, 1, num_flags)
138
+ vis_im = F.interpolate(vis_im.expand(-1, 3, -1, -1),
139
+ size=size, mode='nearest')
140
+ return vis_im
141
+
142
+
143
+ # def visualize_in_row(*data) -> torch.Tensor:
144
+ # """Visualize data in one row.
145
+
146
+ # Args:
147
+ # *data (list): A list of (value, modal, [v_min, v_max]) tuples.
148
+
149
+ # Each tuple defines the following inputs:
150
+
151
+ # value (torch.Tensor): The data value to visualize.
152
+ # modal (str): The modal type string of the data.
153
+ # Supported data modal types are:
154
+
155
+ # * "BHW", "BNHW", "BHWN" for tensors;
156
+ # * "flags_{K}" for binary flags, with K being the number of bits;
157
+ # * "points" for points, where `value` is a tensor with shape [B, N, 2].
158
+
159
+ # v_min (float): Optional, to normalize value.
160
+ # v_max (float): Optional, to normalize value.
161
+
162
+ # Returns:
163
+ # torch.Tensor: A tensor with shape b x 3 x h x w.
164
+ # """
165
+ # batch = None
166
+ # size = None
167
+ # device = None
168
+
169
+ # row = []
170
+ # for v in data:
171
+ # assert isinstance(v, (tuple, list))
172
+ # if len(v) == 2:
173
+ # value, modal = v
174
+ # v_min, v_max = 0.0, 1.0
175
+ # elif len(v) == 4:
176
+ # value, modal, v_min, v_max = v
177
+ # else:
178
+ # raise RuntimeError(
179
+ # 'Input either (value, modal) or (value, modal, v_min, v_max)')
180
+
181
+ # if value is None:
182
+ # assert batch is not None
183
+ # assert size is not None
184
+ # assert device is not None
185
+ # value = torch.rand(batch, 1, size[0], size[1], device=device)
186
+ # modal = 'BNHW'
187
+ # v_min, v_max = 0.0, 1.0
188
+
189
+ # if modal == 'BHW':
190
+ # assert isinstance(value, torch.Tensor)
191
+ # value = value.detach().float()
192
+
193
+ # batch = value.size(0)
194
+ # size = value.shape[1:]
195
+ # device = value.device
196
+
197
+ # value = (value - v_min) / (v_max - v_min)
198
+ # row.append(value.unsqueeze(
199
+ # 1).expand(-1, 3, -1, -1))
200
+
201
+ # elif modal == 'BNHW':
202
+ # assert isinstance(value, torch.Tensor)
203
+ # value = value.detach().float()
204
+
205
+ # batch = value.size(0)
206
+ # size = value.shape[2:]
207
+ # device = value.device
208
+
209
+ # value = (value - v_min) / (v_max - v_min)
210
+ # row += _expand_as_rgbs(value)
211
+
212
+ # elif modal == 'BHWN':
213
+ # assert isinstance(value, torch.Tensor)
214
+ # value = value.detach().float().permute(0, 3, 1, 2)
215
+
216
+ # batch = value.size(0)
217
+ # size = value.shape[2:]
218
+ # device = value.device
219
+
220
+ # value = (value - v_min) / (v_max - v_min)
221
+ # row += _expand_as_rgbs(value)
222
+
223
+ # elif modal.startswith('flags_'):
224
+ # assert isinstance(value, torch.Tensor)
225
+ # value = value.detach().float()
226
+
227
+ # batch = value.size(0)
228
+ # device = value.device
229
+
230
+ # num_flags = int(modal.split('_')[1])
231
+ # assert size is not None
232
+ # row.append(_visualize_flags(value, size, num_flags))
233
+
234
+ # elif modal == 'points':
235
+ # points, background = value
236
+
237
+ # if background is None:
238
+ # background = torch.rand(
239
+ # batch, 1, size[0], size[1], device=device)
240
+ # else:
241
+ # assert isinstance(background, torch.Tensor)
242
+ # background = background.detach().float()
243
+ # background = (background - v_min) / (v_max - v_min)
244
+
245
+ # if points is None:
246
+ # canvas = background
247
+ # else:
248
+ # assert isinstance(points, torch.Tensor)
249
+ # points = points.detach().float()
250
+ # points = denormalize_points(
251
+ # points, background.size(2), background.size(3))
252
+
253
+ # npoints = points.size(1)
254
+ # batch = background.size(0)
255
+ # assert points.size(0) == batch
256
+ # channels = background.size(1)
257
+
258
+ # points = points.reshape(npoints * batch, 2)
259
+
260
+ # point_colors = torch.ones(
261
+ # npoints * batch, channels, dtype=background.dtype, device=background.device)
262
+ # batch_inds = torch.arange(batch).unsqueeze(1).expand(-1, npoints).reshape(
263
+ # npoints * batch).to(dtype=torch.int32, device=background.device)
264
+ # canvas = p2i(points, point_colors, batch_inds, background, 5)
265
+
266
+ # row.append(canvas)
267
+
268
+ # return torch.cat(row, dim=-1)
269
+
270
+
271
+ import math
272
+ def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
273
+ """Decay the learning rate"""
274
+ lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
275
+ for param_group in optimizer.param_groups:
276
+ param_group['lr'] = lr
277
+
278
+ def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
279
+ """Warmup the learning rate"""
280
+ lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
281
+ for param_group in optimizer.param_groups:
282
+ param_group['lr'] = lr
283
+
284
+ def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
285
+ """Decay the learning rate"""
286
+ lr = max(min_lr, init_lr * (decay_rate**epoch))
287
+ for param_group in optimizer.param_groups:
288
+ param_group['lr'] = lr
289
+
290
+ import numpy as np
291
+ import io
292
+ import os
293
+ import time
294
+ from collections import defaultdict, deque
295
+ import datetime
296
+
297
+ import torch
298
+ import torch.distributed as dist
299
+
300
+ class SmoothedValue(object):
301
+ """Track a series of values and provide access to smoothed values over a
302
+ window or the global series average.
303
+ """
304
+
305
+ def __init__(self, window_size=20, fmt=None):
306
+ if fmt is None:
307
+ fmt = "{median:.4f} ({global_avg:.4f})"
308
+ self.deque = deque(maxlen=window_size)
309
+ self.total = 0.0
310
+ self.count = 0
311
+ self.fmt = fmt
312
+
313
+ def update(self, value, n=1):
314
+ self.deque.append(value)
315
+ self.count += n
316
+ self.total += value * n
317
+
318
+ def synchronize_between_processes(self):
319
+ """
320
+ Warning: does not synchronize the deque!
321
+ """
322
+ if not is_dist_avail_and_initialized():
323
+ return
324
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
325
+ dist.barrier()
326
+ dist.all_reduce(t)
327
+ t = t.tolist()
328
+ self.count = int(t[0])
329
+ self.total = t[1]
330
+
331
+ @property
332
+ def median(self):
333
+ d = torch.tensor(list(self.deque))
334
+ return d.median().item()
335
+
336
+ @property
337
+ def avg(self):
338
+ d = torch.tensor(list(self.deque), dtype=torch.float32)
339
+ return d.mean().item()
340
+
341
+ @property
342
+ def global_avg(self):
343
+ return self.total / self.count
344
+
345
+ @property
346
+ def max(self):
347
+ return max(self.deque)
348
+
349
+ @property
350
+ def value(self):
351
+ return self.deque[-1]
352
+
353
+ def __str__(self):
354
+ return self.fmt.format(
355
+ median=self.median,
356
+ avg=self.avg,
357
+ global_avg=self.global_avg,
358
+ max=self.max,
359
+ value=self.value)
360
+
361
+
362
+ class MetricLogger(object):
363
+ def __init__(self, delimiter="\t"):
364
+ self.meters = defaultdict(SmoothedValue)
365
+ self.delimiter = delimiter
366
+
367
+ def update(self, **kwargs):
368
+ for k, v in kwargs.items():
369
+ if isinstance(v, torch.Tensor):
370
+ v = v.item()
371
+ assert isinstance(v, (float, int))
372
+ self.meters[k].update(v)
373
+
374
+ def __getattr__(self, attr):
375
+ if attr in self.meters:
376
+ return self.meters[attr]
377
+ if attr in self.__dict__:
378
+ return self.__dict__[attr]
379
+ raise AttributeError("'{}' object has no attribute '{}'".format(
380
+ type(self).__name__, attr))
381
+
382
+ def __str__(self):
383
+ loss_str = []
384
+ for name, meter in self.meters.items():
385
+ loss_str.append(
386
+ "{}: {}".format(name, str(meter))
387
+ )
388
+ return self.delimiter.join(loss_str)
389
+
390
+ def global_avg(self):
391
+ loss_str = []
392
+ for name, meter in self.meters.items():
393
+ loss_str.append(
394
+ "{}: {:.4f}".format(name, meter.global_avg)
395
+ )
396
+ return self.delimiter.join(loss_str)
397
+
398
+ def synchronize_between_processes(self):
399
+ for meter in self.meters.values():
400
+ meter.synchronize_between_processes()
401
+
402
+ def add_meter(self, name, meter):
403
+ self.meters[name] = meter
404
+
405
+ def log_every(self, iterable, print_freq, header=None):
406
+ i = 0
407
+ if not header:
408
+ header = ''
409
+ start_time = time.time()
410
+ end = time.time()
411
+ iter_time = SmoothedValue(fmt='{avg:.4f}')
412
+ data_time = SmoothedValue(fmt='{avg:.4f}')
413
+ space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
414
+ log_msg = [
415
+ header,
416
+ '[{0' + space_fmt + '}/{1}]',
417
+ 'eta: {eta}',
418
+ '{meters}',
419
+ 'time: {time}',
420
+ 'data: {data}'
421
+ ]
422
+ if torch.cuda.is_available():
423
+ log_msg.append('max mem: {memory:.0f}')
424
+ log_msg = self.delimiter.join(log_msg)
425
+ MB = 1024.0 * 1024.0
426
+ for obj in iterable:
427
+ data_time.update(time.time() - end)
428
+ yield obj
429
+ iter_time.update(time.time() - end)
430
+ if i % print_freq == 0 or i == len(iterable) - 1:
431
+ eta_seconds = iter_time.global_avg * (len(iterable) - i)
432
+ eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
433
+ if torch.cuda.is_available():
434
+ print(log_msg.format(
435
+ i, len(iterable), eta=eta_string,
436
+ meters=str(self),
437
+ time=str(iter_time), data=str(data_time),
438
+ memory=torch.cuda.max_memory_allocated() / MB))
439
+ else:
440
+ print(log_msg.format(
441
+ i, len(iterable), eta=eta_string,
442
+ meters=str(self),
443
+ time=str(iter_time), data=str(data_time)))
444
+ i += 1
445
+ end = time.time()
446
+ total_time = time.time() - start_time
447
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
448
+ print('{} Total time: {} ({:.4f} s / it)'.format(
449
+ header, total_time_str, total_time / len(iterable)))
450
+
451
+
452
+ class AttrDict(dict):
453
+ def __init__(self, *args, **kwargs):
454
+ super(AttrDict, self).__init__(*args, **kwargs)
455
+ self.__dict__ = self
456
+
457
+
458
+ def compute_acc(logits, label, reduction='mean'):
459
+ ret = (torch.argmax(logits, dim=1) == label).float()
460
+ if reduction == 'none':
461
+ return ret.detach()
462
+ elif reduction == 'mean':
463
+ return ret.mean().item()
464
+
465
+ def compute_n_params(model, return_str=True):
466
+ tot = 0
467
+ for p in model.parameters():
468
+ w = 1
469
+ for x in p.shape:
470
+ w *= x
471
+ tot += w
472
+ if return_str:
473
+ if tot >= 1e6:
474
+ return '{:.1f}M'.format(tot / 1e6)
475
+ else:
476
+ return '{:.1f}K'.format(tot / 1e3)
477
+ else:
478
+ return tot
479
+
480
+ def setup_for_distributed(is_master):
481
+ """
482
+ This function disables printing when not in master process
483
+ """
484
+ import builtins as __builtin__
485
+ builtin_print = __builtin__.print
486
+
487
+ def print(*args, **kwargs):
488
+ force = kwargs.pop('force', False)
489
+ if is_master or force:
490
+ builtin_print(*args, **kwargs)
491
+
492
+ __builtin__.print = print
493
+
494
+
495
+ def is_dist_avail_and_initialized():
496
+ if not dist.is_available():
497
+ return False
498
+ if not dist.is_initialized():
499
+ return False
500
+ return True
501
+
502
+
503
+ def get_world_size():
504
+ if not is_dist_avail_and_initialized():
505
+ return 1
506
+ return dist.get_world_size()
507
+
508
+
509
+ def get_rank():
510
+ if not is_dist_avail_and_initialized():
511
+ return 0
512
+ return dist.get_rank()
513
+
514
+
515
+ def is_main_process():
516
+ return get_rank() == 0
517
+
518
+
519
+ def save_on_master(*args, **kwargs):
520
+ if is_main_process():
521
+ torch.save(*args, **kwargs)
522
+
523
+
524
+ def init_distributed_mode(args):
525
+ if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
526
+ args.rank = int(os.environ["RANK"])
527
+ args.world_size = int(os.environ['WORLD_SIZE'])
528
+ args.gpu = int(os.environ['LOCAL_RANK'])
529
+ elif 'SLURM_PROCID' in os.environ:
530
+ args.rank = int(os.environ['SLURM_PROCID'])
531
+ args.gpu = args.rank % torch.cuda.device_count()
532
+ else:
533
+ print('Not using distributed mode')
534
+ args.distributed = False
535
+ return
536
+
537
+ args.distributed = True
538
+
539
+ torch.cuda.set_device(args.gpu)
540
+ args.dist_backend = 'nccl'
541
+ print('| distributed init (rank {}, word {}): {}'.format(
542
+ args.rank, args.world_size, args.dist_url), flush=True)
543
+ torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
544
+ world_size=args.world_size, rank=args.rank)
545
+ torch.distributed.barrier()
546
+ setup_for_distributed(args.rank == 0)
547
+
548
+
pretrain.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ '''
8
+ import argparse
9
+ import os
10
+ from ruamel.yaml import YAML
11
+ import numpy as np
12
+ import random
13
+ import time
14
+ import datetime
15
+ import json
16
+ from pathlib import Path
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.nn.functional as F
20
+ import torch.backends.cudnn as cudnn
21
+ import torch.distributed as dist
22
+ from torch.cuda.amp import GradScaler, autocast
23
+ from models.fflip_pretrain import fflip_pretrain
24
+ from models import utils
25
+ from eval.pretrain_eval import evaluation, itm_eval
26
+ from models.utils import warmup_lr_schedule, step_lr_schedule
27
+ from data import create_dataset, create_sampler, create_loader
28
+ import sys
29
+
30
+
31
+ def train(model, data_loader, optimizer, epoch, device, config):
32
+ # train
33
+ model.train()
34
+
35
+ metric_logger = utils.MetricLogger(delimiter=" ")
36
+ metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
37
+ metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
38
+ metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
39
+
40
+ header = 'Train Epoch: [{}]'.format(epoch)
41
+ print_freq = 50
42
+ # 混合精度训练配置
43
+ scaler = GradScaler()
44
+
45
+ for i, (image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
46
+ if epoch==0:
47
+ warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
48
+ image = image.to(device, non_blocking=True)
49
+ idx = idx.to(device,non_blocking=True)
50
+
51
+ optimizer.zero_grad()
52
+
53
+ # ramp up alpha in the first 2 epochs
54
+ alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader)))
55
+
56
+ loss_ita, loss_itm = model(image, caption, alpha = alpha, idx=idx)
57
+ loss = loss_ita + loss_itm
58
+
59
+ # loss.backward()
60
+ # optimizer.step()
61
+ # mixed precision training
62
+ scaler.scale(loss).backward()
63
+ scaler.step(optimizer)
64
+ scaler.update()
65
+
66
+ metric_logger.update(loss_ita=loss_ita.item())
67
+ metric_logger.update(loss_itm=loss_itm.item())
68
+ metric_logger.update(lr=optimizer.param_groups[0]["lr"])
69
+
70
+
71
+ # gather the stats from all processes
72
+ metric_logger.synchronize_between_processes()
73
+ print("Averaged stats:", metric_logger.global_avg())
74
+ return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
75
+
76
+
77
+ def main(args, config):
78
+ utils.init_distributed_mode(args)
79
+
80
+ device = torch.device(args.device)
81
+
82
+ # fix the seed for reproducibility
83
+ seed = args.seed + utils.get_rank()
84
+ torch.manual_seed(seed)
85
+ np.random.seed(seed)
86
+ random.seed(seed)
87
+ cudnn.benchmark = True
88
+
89
+ #### Dataset ####
90
+ print("Creating dataset")
91
+ train_dataset, test_dataset = create_dataset(config['dataset'], config)
92
+
93
+ if args.distributed:
94
+ num_tasks = utils.get_world_size()
95
+ global_rank = utils.get_rank()
96
+ samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None]
97
+ else:
98
+ samplers = [None, None]
99
+
100
+ train_loader, test_loader = create_loader([train_dataset, test_dataset], samplers,
101
+ batch_size=[config['batch_size_train']] + [config['batch_size_test']],
102
+ num_workers=[8, 8],
103
+ is_trains=[True, False],
104
+ collate_fns=[None, None])
105
+ #### Model ####
106
+ print("Creating model")
107
+ model = fflip_pretrain(pretrained=config['pretrained'], config=config['config'], vit=config['vit'], queue_size=config['queue_size'])
108
+
109
+ model = model.to(device)
110
+
111
+ optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
112
+
113
+ start_epoch = 0
114
+ if args.checkpoint:
115
+ checkpoint = torch.load(args.checkpoint, map_location='cpu')
116
+ state_dict = checkpoint['model']
117
+ model.load_state_dict(state_dict)
118
+
119
+ optimizer.load_state_dict(checkpoint['optimizer'])
120
+ start_epoch = checkpoint['epoch']
121
+ print('resume checkpoint from %s'%args.checkpoint)
122
+
123
+ model_without_ddp = model
124
+ if args.distributed:
125
+ model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
126
+ model_without_ddp = model.module
127
+
128
+ best = 0
129
+ best_epoch = 0
130
+
131
+ print("Start training")
132
+ start_time = time.time()
133
+ for epoch in range(start_epoch, config['max_epoch']):
134
+ if not args.evaluate:
135
+ if args.distributed:
136
+ train_loader.sampler.set_epoch(epoch)
137
+ step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
138
+
139
+ train_stats = train(model, train_loader, optimizer, epoch, device, config)
140
+
141
+ score_test_i2t, score_test_t2i = evaluation(args, model_without_ddp, test_loader, device, config)
142
+
143
+ if utils.is_main_process():
144
+ test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img,
145
+ test_loader.dataset.img2txt)
146
+ print(test_result)
147
+ if args.evaluate:
148
+ log_stats = {**{f'test_{k}': v for k, v in test_result.items()}}
149
+ with open(os.path.join(args.output_dir, "evaluate_log.txt"), "a") as f:
150
+ f.write(json.dumps(log_stats) + "\n")
151
+ else:
152
+ log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
153
+ **{f'test_{k}': v for k, v in test_result.items()},
154
+ 'epoch': epoch,
155
+ 'best_epoch': best_epoch,
156
+ }
157
+ with open(os.path.join(args.output_dir, "train_log.txt"), "a") as f:
158
+ f.write(json.dumps(log_stats) + "\n")
159
+
160
+ save_obj = {
161
+ 'model': model_without_ddp.state_dict(),
162
+ 'optimizer': optimizer.state_dict(),
163
+ 'config': config,
164
+ 'epoch': epoch,
165
+ }
166
+ torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
167
+
168
+ if test_result['r_mean'] > best:
169
+ torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
170
+ best = test_result['r_mean']
171
+ best_epoch = epoch
172
+
173
+ if args.distributed:
174
+ dist.barrier()
175
+
176
+ total_time = time.time() - start_time
177
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
178
+ print('Training time {}'.format(total_time_str))
179
+
180
+
181
+ if __name__ == '__main__':
182
+
183
+ parser = argparse.ArgumentParser()
184
+ parser.add_argument('--config', default='./configs/pretrain.yaml')
185
+ parser.add_argument('--output_dir', default='./outputs')
186
+ parser.add_argument('--checkpoint', default='')
187
+ parser.add_argument('--evaluate', type=bool, default=False)
188
+ parser.add_argument('--device', default='cuda')
189
+ parser.add_argument('--seed', default=42, type=int)
190
+ parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
191
+ parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
192
+ parser.add_argument('--distributed', default=False, type=bool, help='whether to use distributed mode to training')
193
+ args = parser.parse_args()
194
+
195
+ yaml = YAML(typ='safe')
196
+ config = yaml.load(open(args.config, 'r'))
197
+
198
+ Path(args.output_dir).mkdir(parents=True, exist_ok=True)
199
+
200
+ yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
201
+
202
+ main(args, config)
utils.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
3
+ """Decay the learning rate"""
4
+ lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
5
+ for param_group in optimizer.param_groups:
6
+ param_group['lr'] = lr
7
+
8
+ def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
9
+ """Warmup the learning rate"""
10
+ lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
11
+ for param_group in optimizer.param_groups:
12
+ param_group['lr'] = lr
13
+
14
+ def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
15
+ """Decay the learning rate"""
16
+ lr = max(min_lr, init_lr * (decay_rate**epoch))
17
+ for param_group in optimizer.param_groups:
18
+ param_group['lr'] = lr
19
+
20
+ import numpy as np
21
+ import io
22
+ import os
23
+ import time
24
+ from collections import defaultdict, deque
25
+ import datetime
26
+
27
+ import torch
28
+ import torch.distributed as dist
29
+
30
+ class SmoothedValue(object):
31
+ """Track a series of values and provide access to smoothed values over a
32
+ window or the global series average.
33
+ """
34
+
35
+ def __init__(self, window_size=20, fmt=None):
36
+ if fmt is None:
37
+ fmt = "{median:.4f} ({global_avg:.4f})"
38
+ self.deque = deque(maxlen=window_size)
39
+ self.total = 0.0
40
+ self.count = 0
41
+ self.fmt = fmt
42
+
43
+ def update(self, value, n=1):
44
+ self.deque.append(value)
45
+ self.count += n
46
+ self.total += value * n
47
+
48
+ def synchronize_between_processes(self):
49
+ """
50
+ Warning: does not synchronize the deque!
51
+ """
52
+ if not is_dist_avail_and_initialized():
53
+ return
54
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
55
+ dist.barrier()
56
+ dist.all_reduce(t)
57
+ t = t.tolist()
58
+ self.count = int(t[0])
59
+ self.total = t[1]
60
+
61
+ @property
62
+ def median(self):
63
+ d = torch.tensor(list(self.deque))
64
+ return d.median().item()
65
+
66
+ @property
67
+ def avg(self):
68
+ d = torch.tensor(list(self.deque), dtype=torch.float32)
69
+ return d.mean().item()
70
+
71
+ @property
72
+ def global_avg(self):
73
+ return self.total / self.count
74
+
75
+ @property
76
+ def max(self):
77
+ return max(self.deque)
78
+
79
+ @property
80
+ def value(self):
81
+ return self.deque[-1]
82
+
83
+ def __str__(self):
84
+ return self.fmt.format(
85
+ median=self.median,
86
+ avg=self.avg,
87
+ global_avg=self.global_avg,
88
+ max=self.max,
89
+ value=self.value)
90
+
91
+
92
+ class MetricLogger(object):
93
+ def __init__(self, delimiter="\t"):
94
+ self.meters = defaultdict(SmoothedValue)
95
+ self.delimiter = delimiter
96
+
97
+ def update(self, **kwargs):
98
+ for k, v in kwargs.items():
99
+ if isinstance(v, torch.Tensor):
100
+ v = v.item()
101
+ assert isinstance(v, (float, int))
102
+ self.meters[k].update(v)
103
+
104
+ def __getattr__(self, attr):
105
+ if attr in self.meters:
106
+ return self.meters[attr]
107
+ if attr in self.__dict__:
108
+ return self.__dict__[attr]
109
+ raise AttributeError("'{}' object has no attribute '{}'".format(
110
+ type(self).__name__, attr))
111
+
112
+ def __str__(self):
113
+ loss_str = []
114
+ for name, meter in self.meters.items():
115
+ loss_str.append(
116
+ "{}: {}".format(name, str(meter))
117
+ )
118
+ return self.delimiter.join(loss_str)
119
+
120
+ def global_avg(self):
121
+ loss_str = []
122
+ for name, meter in self.meters.items():
123
+ loss_str.append(
124
+ "{}: {:.4f}".format(name, meter.global_avg)
125
+ )
126
+ return self.delimiter.join(loss_str)
127
+
128
+ def synchronize_between_processes(self):
129
+ for meter in self.meters.values():
130
+ meter.synchronize_between_processes()
131
+
132
+ def add_meter(self, name, meter):
133
+ self.meters[name] = meter
134
+
135
+ def log_every(self, iterable, print_freq, header=None):
136
+ i = 0
137
+ if not header:
138
+ header = ''
139
+ start_time = time.time()
140
+ end = time.time()
141
+ iter_time = SmoothedValue(fmt='{avg:.4f}')
142
+ data_time = SmoothedValue(fmt='{avg:.4f}')
143
+ space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
144
+ log_msg = [
145
+ header,
146
+ '[{0' + space_fmt + '}/{1}]',
147
+ 'eta: {eta}',
148
+ '{meters}',
149
+ 'time: {time}',
150
+ 'data: {data}'
151
+ ]
152
+ if torch.cuda.is_available():
153
+ log_msg.append('max mem: {memory:.0f}')
154
+ log_msg = self.delimiter.join(log_msg)
155
+ MB = 1024.0 * 1024.0
156
+ for obj in iterable:
157
+ data_time.update(time.time() - end)
158
+ yield obj
159
+ iter_time.update(time.time() - end)
160
+ if i % print_freq == 0 or i == len(iterable) - 1:
161
+ eta_seconds = iter_time.global_avg * (len(iterable) - i)
162
+ eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
163
+ if torch.cuda.is_available():
164
+ print(log_msg.format(
165
+ i, len(iterable), eta=eta_string,
166
+ meters=str(self),
167
+ time=str(iter_time), data=str(data_time),
168
+ memory=torch.cuda.max_memory_allocated() / MB))
169
+ else:
170
+ print(log_msg.format(
171
+ i, len(iterable), eta=eta_string,
172
+ meters=str(self),
173
+ time=str(iter_time), data=str(data_time)))
174
+ i += 1
175
+ end = time.time()
176
+ total_time = time.time() - start_time
177
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
178
+ print('{} Total time: {} ({:.4f} s / it)'.format(
179
+ header, total_time_str, total_time / len(iterable)))
180
+
181
+
182
+ class AttrDict(dict):
183
+ def __init__(self, *args, **kwargs):
184
+ super(AttrDict, self).__init__(*args, **kwargs)
185
+ self.__dict__ = self
186
+
187
+
188
+ def compute_acc(logits, label, reduction='mean'):
189
+ ret = (torch.argmax(logits, dim=1) == label).float()
190
+ if reduction == 'none':
191
+ return ret.detach()
192
+ elif reduction == 'mean':
193
+ return ret.mean().item()
194
+
195
+ def compute_n_params(model, return_str=True):
196
+ tot = 0
197
+ for p in model.parameters():
198
+ w = 1
199
+ for x in p.shape:
200
+ w *= x
201
+ tot += w
202
+ if return_str:
203
+ if tot >= 1e6:
204
+ return '{:.1f}M'.format(tot / 1e6)
205
+ else:
206
+ return '{:.1f}K'.format(tot / 1e3)
207
+ else:
208
+ return tot
209
+
210
+ def setup_for_distributed(is_master):
211
+ """
212
+ This function disables printing when not in master process
213
+ """
214
+ import builtins as __builtin__
215
+ builtin_print = __builtin__.print
216
+
217
+ def print(*args, **kwargs):
218
+ force = kwargs.pop('force', False)
219
+ if is_master or force:
220
+ builtin_print(*args, **kwargs)
221
+
222
+ __builtin__.print = print
223
+
224
+
225
+ def is_dist_avail_and_initialized():
226
+ if not dist.is_available():
227
+ return False
228
+ if not dist.is_initialized():
229
+ return False
230
+ return True
231
+
232
+
233
+ def get_world_size():
234
+ if not is_dist_avail_and_initialized():
235
+ return 1
236
+ return dist.get_world_size()
237
+
238
+
239
+ def get_rank():
240
+ if not is_dist_avail_and_initialized():
241
+ return 0
242
+ return dist.get_rank()
243
+
244
+
245
+ def is_main_process():
246
+ return get_rank() == 0
247
+
248
+
249
+ def save_on_master(*args, **kwargs):
250
+ if is_main_process():
251
+ torch.save(*args, **kwargs)
252
+
253
+
254
+ def init_distributed_mode(args):
255
+ if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
256
+ args.rank = int(os.environ["RANK"])
257
+ args.world_size = int(os.environ['WORLD_SIZE'])
258
+ args.gpu = int(os.environ['LOCAL_RANK'])
259
+ elif 'SLURM_PROCID' in os.environ:
260
+ args.rank = int(os.environ['SLURM_PROCID'])
261
+ args.gpu = args.rank % torch.cuda.device_count()
262
+ else:
263
+ print('Not using distributed mode')
264
+ args.distributed = False
265
+ return
266
+
267
+ args.distributed = True
268
+
269
+ torch.cuda.set_device(args.gpu)
270
+ args.dist_backend = 'nccl'
271
+ print('| distributed init (rank {}, word {}): {}'.format(
272
+ args.rank, args.world_size, args.dist_url), flush=True)
273
+ torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
274
+ world_size=args.world_size, rank=args.rank)
275
+ torch.distributed.barrier()
276
+ setup_for_distributed(args.rank == 0)
277
+
278
+