File size: 10,823 Bytes
dca515e 8a857f6 7121d7c 8a857f6 dca515e 8a857f6 b734d6b 8a857f6 e7a4013 812717c 04efe3f 8a857f6 7121d7c 8a857f6 66cd022 f8cbb31 f840bd1 8a857f6 812717c 8a857f6 f840bd1 b734d6b 8a857f6 66cd022 f840bd1 7e041f6 66cd022 f840bd1 66cd022 b734d6b 8a857f6 812717c 7121d7c 8a857f6 7121d7c 8a857f6 b734d6b f840bd1 7121d7c 8a857f6 b734d6b f840bd1 b734d6b f840bd1 8a857f6 778f9a9 8a857f6 03cce7b 812717c b734d6b f840bd1 8a857f6 7121d7c 8a857f6 b734d6b f840bd1 8a857f6 7121d7c 8a857f6 58a75e6 8a857f6 58a75e6 8a857f6 58a75e6 8a857f6 58a75e6 8a857f6 082b15b b734d6b f840bd1 8a857f6 b734d6b 8a857f6 a0f5543 baf39b6 67ecbc8 baf39b6 a09c29b 402cb09 a0f5543 7121d7c 8a857f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
---
language:
- en
datasets:
- garage-bAInd/Open-Platypus
- Open-Orca/OpenOrca
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-4.0
---
<p><h1>🐋 The First OrcaPlatypus! 🐋</h1></p>
![Platty](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypusMerge.jpg)
# OpenOrca-Platypus2-13B
OpenOrca-Platypus2-13B is a merge of [`garage-bAInd/Platypus2-13B`](https://huggingface.co/garage-bAInd/Platypus2-13B) and [`Open-Orca/OpenOrcaxOpenChat-Preview2-13B`](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B).
This model is more than the sum of its parts! We are happy to be teaming up with the [Platypus](https://platypus-llm.github.io/) team to bring you a new model which once again tops the leaderboards!
Want to visualize our full (pre-filtering) dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2).
[<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2)
We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.
We will also give sneak-peak announcements on our Discord, which you can find here:
https://AlignmentLab.ai
# Evaluation
## HuggingFace Leaderboard Performance
![HF Leaderboard](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BHFLeaderboard.webp)
| Metric | Value |
|-----------------------|-------|
| MMLU (5-shot) | 59.5 |
| ARC (25-shot) | 62.88 |
| HellaSwag (10-shot) | 83.19 |
| TruthfulQA (0-shot) | 52.69 |
| Avg. | 64.56 |
We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
Please see below for detailed instructions on reproducing benchmark results.
## AGIEval Performance
We compare our results to our base Preview2 model (using LM Evaluation Harness).
We find **112%** of the base model's performance on AGI Eval, averaging **0.463**.
A large part of this boost is the substantial improvement to LSAT Logical Reasoning performance.
![OpenOrca-Platypus2-13B AGIEval Performance](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BAGIEval.webp "AGIEval Performance")
## BigBench-Hard Performance
We compare our results to our base Preview2 model (using LM Evaluation Harness).
We find **105%** of the base model's performance on BigBench-Hard, averaging **0.442**.
![OpenOrca-Platypus2-13B BigBench-Hard Performance](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BBigBenchHard.webp "BigBench-Hard Performance")
# Model Details
* **Trained by**: **Platypus2-13B** trained by Cole Hunter & Ariel Lee; **OpenOrcaxOpenChat-Preview2-13B** trained by Open-Orca
* **Model type:** **OpenOrca-Platypus2-13B** is an auto-regressive language model based on the Lllama 2 transformer architecture.
* **Language(s)**: English
* **License for Platypus2-13B base weights**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
* **License for OpenOrcaxOpenChat-Preview2-13B base weights**: Llama 2 Commercial
# Prompting
## Prompt Template for base Platypus2-13B
```
### Instruction:
<prompt> (without the <>)
### Response:
```
## Prompt Template for base OpenOrcaxOpenChat-Preview2-13B
OpenChat Llama2 V1: see [OpenOrcaxOpenChat-Preview2-13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B) for additional information.
# Training
## Training Datasets
`garage-bAInd/Platypus2-13B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information.
`Open-Orca/OpenOrcaxOpenChat-Preview2-13B` trained using a refined subset of most of the GPT-4 data from the [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca).
## Training Procedure
`Open-Orca/Platypus2-13B` was instruction fine-tuned using LoRA on 1x A100-80GB.
For training details and inference instructions please see the [Platypus](https://github.com/arielnlee/Platypus) GitHub repo.
# Supplemental
## Reproducing Evaluation Results (for HuggingFace Leaderboard Eval)
Install LM Evaluation Harness:
```
# clone repository
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
# change to repo directory
cd lm-evaluation-harness
# check out the correct commit
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
# install
pip install -e .
```
Each task was evaluated on a single A100-80GB GPU.
ARC:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/arc_challenge_25shot.json --device cuda --num_fewshot 25
```
HellaSwag:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/hellaswag_10shot.json --device cuda --num_fewshot 10
```
MMLU:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/mmlu_5shot.json --device cuda --num_fewshot 5
```
TruthfulQA:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/truthfulqa_0shot.json --device cuda
```
## Limitations and bias
Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
# Citations
```bibtex
@software{hunterlee2023orcaplaty1
title = {OpenOrcaPlatypus: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset and Merged with divergent STEM and Logic Dataset Model},
author = {Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz and Bleys Goodson and Wing Lian and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B},
}
@article{platypus2023,
title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
booktitle={arXiv preprint arxiv:2308.07317},
year={2023}
}
@software{OpenOrcaxOpenChatPreview2,
title = {OpenOrcaxOpenChatPreview2: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
author = {Guan Wang and Bleys Goodson and Wing Lian and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B},
}
@software{openchat,
title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}},
author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling},
doi = {10.5281/zenodo.8105775},
url = {https://github.com/imoneoi/openchat},
version = {pre-release},
year = {2023},
month = {7},
}
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint= arXiv 2307.09288
}
@misc{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
year={2023},
eprint={2301.13688},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
@article{hu2021lora,
title={LoRA: Low-Rank Adaptation of Large Language Models},
author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
journal={CoRR},
year={2021}
}
``` |