Edit model card

glpn-nyu-finetuned

This model is a fine-tuned version of vinvino02/glpn-nyu on the diode-subset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5286
  • Mae: 3.1196
  • Rmse: 3.5796
  • Abs Rel: 5.9353
  • Log Mae: 0.6899
  • Log Rmse: 0.8145
  • Delta1: 0.3012
  • Delta2: 0.3076
  • Delta3: 0.3093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 24
  • eval_batch_size: 48
  • seed: 2022
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mae Rmse Abs Rel Log Mae Log Rmse Delta1 Delta2 Delta3
No log 1.0 1 1.5476 3.2112 3.7133 6.1586 0.6980 0.8267 0.2998 0.3073 0.3091
No log 2.0 2 1.5441 3.1939 3.6889 6.1181 0.6965 0.8245 0.3001 0.3073 0.3091
No log 3.0 3 1.5410 3.1783 3.6668 6.0811 0.6951 0.8225 0.3003 0.3074 0.3092
No log 4.0 4 1.5381 3.1643 3.6465 6.0474 0.6939 0.8207 0.3005 0.3074 0.3092
No log 5.0 5 1.5355 3.1520 3.6285 6.0172 0.6928 0.8190 0.3007 0.3075 0.3092
No log 6.0 6 1.5333 3.1415 3.6128 5.9909 0.6918 0.8176 0.3009 0.3075 0.3092
No log 7.0 7 1.5315 3.1329 3.5999 5.9693 0.6911 0.8164 0.3010 0.3075 0.3093
No log 8.0 8 1.5301 3.1264 3.5901 5.9529 0.6905 0.8155 0.3011 0.3075 0.3093
No log 9.0 9 1.5291 3.1219 3.5832 5.9413 0.6901 0.8149 0.3012 0.3076 0.3093
No log 10.0 10 1.5286 3.1196 3.5796 5.9353 0.6899 0.8145 0.3012 0.3076 0.3093

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3
Downloads last month
16
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using Onegafer/glpn-nyu-finetuned 1