Model_Repo_Template / README.md
Nymbo's picture
Update README.md
ada8560 verified
metadata
tags:
  - text-to-image
library_name: generic

Text To Image repository template

This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps

  1. Specify the requirements by defining a requirements.txt file.
  2. Implement the pipeline.py __init__ and __call__ methods. These methods are called by the Inference API. The __init__ method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The __call__ method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.

Example repos

How to start

First create a repo in https://hf.co/new. Then clone this template and push it to your repo.

git clone https://huggingface.co/templates/text-to-image
cd text-to-image
git remote set-url origin https://huggingface.co/Nymbo/Model_Repo_Template
git push --force

For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1

Doc / guide: https://huggingface.co/docs/hub/model-cards

{{ card_data }}

Model Card for {{ model_id | default("Model ID", true) }}

{{ model_summary | default("", true) }}

Model Details

Model Description

{{ model_description | default("", true) }}

  • Developed by: {{ developers | default("[More Information Needed]", true)}}
  • Funded by [optional]: {{ funded_by | default("[More Information Needed]", true)}}
  • Shared by [optional]: {{ shared_by | default("[More Information Needed]", true)}}
  • Model type: {{ model_type | default("[More Information Needed]", true)}}
  • Language(s) (NLP): {{ language | default("[More Information Needed]", true)}}
  • License: {{ license | default("[More Information Needed]", true)}}
  • Finetuned from model [optional]: {{ base_model | default("[More Information Needed]", true)}}

Model Sources [optional]

  • Repository: {{ repo | default("[More Information Needed]", true)}}
  • Paper [optional]: {{ paper | default("[More Information Needed]", true)}}
  • Demo [optional]: {{ demo | default("[More Information Needed]", true)}}

Uses

Direct Use

{{ direct_use | default("[More Information Needed]", true)}}

Downstream Use [optional]

{{ downstream_use | default("[More Information Needed]", true)}}

Out-of-Scope Use

{{ out_of_scope_use | default("[More Information Needed]", true)}}

Bias, Risks, and Limitations

{{ bias_risks_limitations | default("[More Information Needed]", true)}}

Recommendations

{{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}}

How to Get Started with the Model

Use the code below to get started with the model.

{{ get_started_code | default("[More Information Needed]", true)}}

Training Details

Training Data

{{ training_data | default("[More Information Needed]", true)}}

Training Procedure

Preprocessing [optional]

{{ preprocessing | default("[More Information Needed]", true)}}

Training Hyperparameters

  • Training regime: {{ training_regime | default("[More Information Needed]", true)}}

Speeds, Sizes, Times [optional]

{{ speeds_sizes_times | default("[More Information Needed]", true)}}

Evaluation

Testing Data, Factors & Metrics

Testing Data

{{ testing_data | default("[More Information Needed]", true)}}

Factors

{{ testing_factors | default("[More Information Needed]", true)}}

Metrics

{{ testing_metrics | default("[More Information Needed]", true)}}

Results

{{ results | default("[More Information Needed]", true)}}

Summary

{{ results_summary | default("", true) }}

Model Examination [optional]

{{ model_examination | default("[More Information Needed]", true)}}

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: {{ hardware_type | default("[More Information Needed]", true)}}
  • Hours used: {{ hours_used | default("[More Information Needed]", true)}}
  • Cloud Provider: {{ cloud_provider | default("[More Information Needed]", true)}}
  • Compute Region: {{ cloud_region | default("[More Information Needed]", true)}}
  • Carbon Emitted: {{ co2_emitted | default("[More Information Needed]", true)}}

Technical Specifications [optional]

Model Architecture and Objective

{{ model_specs | default("[More Information Needed]", true)}}

Compute Infrastructure

{{ compute_infrastructure | default("[More Information Needed]", true)}}

Hardware

{{ hardware_requirements | default("[More Information Needed]", true)}}

Software

{{ software | default("[More Information Needed]", true)}}

Citation [optional]

BibTeX:

{{ citation_bibtex | default("[More Information Needed]", true)}}

APA:

{{ citation_apa | default("[More Information Needed]", true)}}

Glossary [optional]

{{ glossary | default("[More Information Needed]", true)}}

More Information [optional]

{{ more_information | default("[More Information Needed]", true)}}

Model Card Authors [optional]

{{ model_card_authors | default("[More Information Needed]", true)}}

Model Card Contact

{{ model_card_contact | default("[More Information Needed]", true)}}