Vit-GPT2-COCO2017Flickr-02
This model is a fine-tuned version of nlpconnect/vit-gpt2-image-captioning on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2598
- Rouge1: 41.8246
- Rouge2: 16.1808
- Rougel: 38.0947
- Rougelsum: 38.0582
- Gen Len: 11.7462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|---|
0.2425 | 0.08 | 500 | 11.6315 | 0.2258 | 40.7869 | 15.199 | 37.0489 | 37.0626 |
0.2201 | 0.15 | 1000 | 11.9823 | 0.2249 | 40.1404 | 14.8742 | 36.584 | 36.5776 |
0.219 | 0.23 | 1500 | 11.25 | 0.2247 | 40.8233 | 15.4793 | 37.2918 | 37.2909 |
0.2111 | 0.31 | 2000 | 11.3288 | 0.2235 | 40.9526 | 15.2346 | 37.3222 | 37.3373 |
0.2093 | 0.38 | 2500 | 12.0504 | 0.2231 | 40.8278 | 15.4807 | 37.0495 | 37.0609 |
0.2029 | 0.46 | 3000 | 12.0935 | 0.2237 | 41.0299 | 15.7008 | 37.4951 | 37.4861 |
0.2078 | 0.54 | 3500 | 11.7654 | 0.2233 | 40.6441 | 15.5267 | 37.1304 | 37.1546 |
0.1998 | 0.62 | 4000 | 11.7535 | 0.2241 | 41.2438 | 15.6237 | 37.3616 | 37.3653 |
0.1963 | 0.69 | 4500 | 11.5485 | 0.2237 | 41.5874 | 15.9016 | 38.0843 | 38.1149 |
0.197 | 0.77 | 5000 | 11.5915 | 0.2238 | 41.2501 | 16.2728 | 37.4111 | 37.4342 |
0.1924 | 0.85 | 5500 | 11.86 | 0.2249 | 40.8554 | 15.434 | 37.3203 | 37.3119 |
0.1957 | 0.92 | 6000 | 11.8842 | 0.2248 | 40.695 | 15.3006 | 37.1779 | 37.1898 |
0.1919 | 1.0 | 6500 | 11.8185 | 0.2227 | 40.4899 | 15.3529 | 36.9403 | 36.9674 |
0.1502 | 1.08 | 7000 | 11.955 | 0.2332 | 40.9993 | 15.3624 | 37.4968 | 37.5274 |
0.1463 | 1.15 | 7500 | 11.7792 | 0.2340 | 41.1808 | 16.0105 | 37.7805 | 37.7884 |
0.1503 | 1.23 | 8000 | 11.5815 | 0.2364 | 41.3334 | 15.6562 | 37.7087 | 37.7118 |
0.1496 | 1.31 | 8500 | 11.8477 | 0.2320 | 41.171 | 15.6112 | 37.4079 | 37.4274 |
0.1491 | 1.38 | 9000 | 11.735 | 0.2328 | 41.0707 | 15.5662 | 37.5235 | 37.5222 |
0.1418 | 1.46 | 9500 | 11.5685 | 0.2344 | 41.3775 | 16.2084 | 37.8977 | 37.9202 |
0.1474 | 1.54 | 10000 | 11.9992 | 0.2326 | 41.4136 | 16.1038 | 37.4991 | 37.5212 |
0.1414 | 1.62 | 10500 | 11.9308 | 0.2364 | 41.3191 | 15.8292 | 37.5841 | 37.6033 |
0.1419 | 1.69 | 11000 | 11.6719 | 0.2391 | 41.6061 | 16.0641 | 37.9547 | 37.9706 |
0.1398 | 1.77 | 11500 | 11.5842 | 0.2342 | 41.9828 | 16.4948 | 38.2849 | 38.3078 |
0.1427 | 1.85 | 12000 | 11.9746 | 0.2347 | 41.3131 | 15.7264 | 37.4993 | 37.5159 |
0.1372 | 1.92 | 12500 | 11.5858 | 0.2353 | 41.8467 | 16.3585 | 38.1331 | 38.1278 |
0.1322 | 2.0 | 13000 | 11.3688 | 0.2368 | 41.8492 | 16.1515 | 38.213 | 38.2573 |
0.1031 | 2.08 | 13500 | 11.9769 | 0.2567 | 41.3124 | 15.7976 | 37.6082 | 37.6376 |
0.1061 | 2.15 | 14000 | 12.1223 | 0.2532 | 41.651 | 16.1237 | 37.9306 | 37.955 |
0.1036 | 2.23 | 14500 | 11.8531 | 0.2571 | 41.3558 | 16.0047 | 37.6471 | 37.668 |
0.1023 | 2.31 | 15000 | 11.8785 | 0.2559 | 41.4787 | 15.911 | 37.7424 | 37.7684 |
0.1056 | 2.38 | 15500 | 11.81 | 0.2566 | 41.638 | 16.0218 | 37.9238 | 37.9395 |
0.1034 | 2.46 | 16000 | 11.8492 | 0.2575 | 41.5721 | 16.2242 | 37.8949 | 37.9075 |
0.1037 | 2.54 | 16500 | 11.6635 | 0.2572 | 41.6212 | 15.9041 | 37.9474 | 37.9701 |
0.1017 | 2.62 | 17000 | 11.8096 | 0.2565 | 41.4034 | 15.8097 | 37.7397 | 37.7466 |
0.1019 | 2.69 | 17500 | 11.7215 | 0.2578 | 41.5811 | 15.9254 | 37.8885 | 37.9191 |
0.0955 | 2.77 | 18000 | 11.6642 | 0.2585 | 41.8661 | 16.3595 | 38.3758 | 38.3996 |
0.0975 | 2.85 | 18500 | 11.8031 | 0.2599 | 41.5204 | 15.9178 | 37.93 | 37.9513 |
0.0991 | 2.92 | 19000 | 0.2595 | 41.9135 | 16.1875 | 38.1738 | 38.1353 | 11.7381 |
0.0975 | 3.0 | 19500 | 0.2598 | 41.8246 | 16.1808 | 38.0947 | 38.0582 | 11.7462 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 9
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for NourFakih/Vit-GPT2-COCO2017Flickr-02
Base model
nlpconnect/vit-gpt2-image-captioning