NitishKarra's picture
update model card README.md
c8e8b60
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - wildreceipt
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-wildreceipt
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wildreceipt
          type: wildreceipt
          config: WildReceipt
          split: train
          args: WildReceipt
        metrics:
          - name: Precision
            type: precision
            value: 0.8693453601202679
          - name: Recall
            type: recall
            value: 0.8753268198706481
          - name: F1
            type: f1
            value: 0.872325836533187
          - name: Accuracy
            type: accuracy
            value: 0.9240429965997587

layoutlmv3-finetuned-wildreceipt

This model is a fine-tuned version of microsoft/layoutlmv3-base on the wildreceipt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3154
  • Precision: 0.8693
  • Recall: 0.8753
  • F1: 0.8723
  • Accuracy: 0.9240

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.32 100 1.3618 0.6375 0.3049 0.4125 0.6708
No log 0.63 200 0.9129 0.6662 0.4897 0.5645 0.7631
No log 0.95 300 0.6800 0.7273 0.6375 0.6795 0.8274
No log 1.26 400 0.5733 0.7579 0.6926 0.7238 0.8501
1.0638 1.58 500 0.5015 0.7854 0.7383 0.7611 0.8667
1.0638 1.89 600 0.4501 0.7916 0.7680 0.7796 0.8770
1.0638 2.21 700 0.4145 0.8177 0.8053 0.8114 0.8917
1.0638 2.52 800 0.3835 0.8214 0.8210 0.8212 0.8961
1.0638 2.84 900 0.3666 0.8251 0.8338 0.8294 0.9009
0.423 3.15 1000 0.3524 0.8485 0.8217 0.8349 0.9026
0.423 3.47 1100 0.3451 0.8430 0.8327 0.8378 0.9060
0.423 3.79 1200 0.3348 0.8347 0.8504 0.8425 0.9092
0.423 4.1 1300 0.3331 0.8368 0.8448 0.8408 0.9079
0.423 4.42 1400 0.3163 0.8503 0.8519 0.8511 0.9138
0.2822 4.73 1500 0.3168 0.8531 0.8504 0.8518 0.9133
0.2822 5.05 1600 0.3013 0.8629 0.8577 0.8603 0.9183
0.2822 5.36 1700 0.3146 0.8619 0.8528 0.8573 0.9160
0.2822 5.68 1800 0.3121 0.8474 0.8638 0.8555 0.9159
0.2822 5.99 1900 0.3054 0.8537 0.8667 0.8601 0.9166
0.2176 6.31 2000 0.3127 0.8556 0.8592 0.8574 0.9167
0.2176 6.62 2100 0.3072 0.8568 0.8667 0.8617 0.9194
0.2176 6.94 2200 0.2989 0.8617 0.8660 0.8638 0.9209
0.2176 7.26 2300 0.2997 0.8616 0.8682 0.8649 0.9199
0.2176 7.57 2400 0.3100 0.8538 0.8689 0.8613 0.9191
0.1777 7.89 2500 0.3022 0.8649 0.8695 0.8672 0.9228
0.1777 8.2 2600 0.2990 0.8631 0.8740 0.8685 0.9224
0.1777 8.52 2700 0.3072 0.8669 0.8697 0.8683 0.9228
0.1777 8.83 2800 0.3038 0.8689 0.8720 0.8705 0.9238
0.1777 9.15 2900 0.3138 0.8726 0.8673 0.8700 0.9216
0.1434 9.46 3000 0.3150 0.8610 0.8740 0.8674 0.9221
0.1434 9.78 3100 0.3055 0.8674 0.8742 0.8708 0.9239
0.1434 10.09 3200 0.3182 0.8618 0.8724 0.8671 0.9215
0.1434 10.41 3300 0.3175 0.8633 0.8727 0.8680 0.9223
0.1434 10.73 3400 0.3146 0.8685 0.8717 0.8701 0.9234
0.1282 11.04 3500 0.3136 0.8671 0.8757 0.8714 0.9233
0.1282 11.36 3600 0.3186 0.8679 0.8734 0.8706 0.9225
0.1282 11.67 3700 0.3147 0.8701 0.8745 0.8723 0.9238
0.1282 11.99 3800 0.3159 0.8705 0.8759 0.8732 0.9244
0.1282 12.3 3900 0.3147 0.8699 0.8748 0.8723 0.9246
0.1121 12.62 4000 0.3154 0.8693 0.8753 0.8723 0.9240

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1