Edit model card

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 52472123757
  • CO2 Emissions (in grams): 4.1360

This model reuses and extends a Bert model trained on NicholasSynovic/Free-AutoTrain-VEAA

Validation Metrics

  • Loss: 1.425
  • Accuracy: 0.636
  • Macro F1: 0.504
  • Micro F1: 0.636
  • Weighted F1: 0.624
  • Macro Precision: 0.523
  • Micro Precision: 0.636
  • Weighted Precision: 0.630
  • Macro Recall: 0.508
  • Micro Recall: 0.636
  • Weighted Recall: 0.636

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/NicholasSynovic/autotrain-luc-comp429-victorian-authorship-classification-52472123757

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("NicholasSynovic/AutoTrain-LUC-COMP429-VEAA-Classification", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("NicholasSynovic/autotrain-luc-comp429-victorian-authorship-classification-52472123757", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
Downloads last month
10
Safetensors
Model size
110M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.