FaceScanPaliGemma_Emotion
from PIL import Image
import torch
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
model = PaliGemmaForConditionalGeneration.from_pretrained('NYUAD-ComNets/FaceScanPaliGemma_Emotion',torch_dtype=torch.bfloat16)
input_text = "what is the emotion of the person in the image?"
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
input_image = Image.open('image_path')
inputs = processor(text=input_text, images=input_image, padding="longest", do_convert_rgb=True, return_tensors="pt").to(device)
inputs = inputs.to(dtype=model.dtype)
with torch.no_grad():
output = model.generate(**inputs, max_length=500)
result=processor.decode(output[0], skip_special_tokens=True)[len(input_text):].strip()
Model description
This model is a fine-tuned version of google/paligemma-3b-pt-224 on the AffectNet dataset. The model aims to classify the emotion of face image or image with one person into eight categoris such as 'neutral', 'happy', 'sad', 'surprise', 'fear', 'disgust', 'anger', 'contempt'
Model Performance
Accuracy: 59.4 %, F1 score: 59 %
Intended uses & limitations
This model is used for research purposes
Training and evaluation data
AffectNet dataset was used for training and validating the model
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 5
Training results
Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
BibTeX entry and citation info
@article{aldahoul2024exploring,
title={Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age},
author={AlDahoul, Nouar and Tan, Myles Joshua Toledo and Kasireddy, Harishwar Reddy and Zaki, Yasir},
journal={arXiv preprint arXiv:2410.24148},
year={2024}
}
@misc{ComNets,
url={https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Emotion](https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Emotion)},
title={FaceScanPaliGemma_Emotion},
author={Nouar AlDahoul, Yasir Zaki}
}
- Downloads last month
- 24
Model tree for NYUAD-ComNets/FaceScanPaliGemma_Emotion
Base model
google/paligemma-3b-pt-224