|
import logging |
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.utils.checkpoint import checkpoint |
|
from transformers import T5Config |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
) |
|
from transformers.utils import ModelOutput |
|
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map |
|
|
|
from .configuration_custom_t5 import ( |
|
POSITION_ENCODING_REL_T5_BIAS, |
|
POSITION_ENCODING_REL_TRANSFORMER_XL, |
|
POSITION_ENCODING_ROTARY, |
|
POSITION_ENCODING_ROTARY_NEW, |
|
POSITION_ENCODING_ABS_LEARNED, |
|
POSITION_ENCODING_ABS_SINUSOID, |
|
POSITION_ENCODING_ALiBi, |
|
POSITION_ENCODING_ALiBi_LEARNED, |
|
POSITION_ENCODING_NONE, |
|
POSITION_ENCODING_NONE_WINDOW, |
|
CustomT5Config, |
|
) |
|
from .modeling_t5 import ( |
|
T5Stack, |
|
T5PreTrainedModel, |
|
T5Block, |
|
T5LayerNorm, |
|
T5LayerFF, |
|
T5LayerSelfAttention, |
|
T5Attention, |
|
T5LayerCrossAttention, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class CausalLMOutputWithPastAndLoss(ModelOutput): |
|
""" |
|
Base class for causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
non_reduced_loss: Optional[torch.FloatTensor] = None |
|
|
|
|
|
def fixed_pos_embedding(x, seq_dim=1, seq_len=None): |
|
dim = x.shape[-1] |
|
if seq_len is None: |
|
seq_len = x.shape[seq_dim] |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) |
|
sinusoid_inp = ( |
|
torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq) |
|
.to(x.device) |
|
.float() |
|
) |
|
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) |
|
|
|
|
|
def rotate_every_two(x): |
|
""" |
|
Example: [a, b, c, d] -> [-b, a, -d, c] |
|
""" |
|
x1 = x[:, :, :, ::2] |
|
x2 = x[:, :, :, 1::2] |
|
x = torch.stack((-x2, x1), axis=-1) |
|
return x.flatten(-2) |
|
|
|
|
|
def apply_rotary_pos_emb(x, sincos, offset=0): |
|
sin, cos = map( |
|
lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave( |
|
2, 3 |
|
), |
|
sincos, |
|
) |
|
|
|
return (x * cos) + (rotate_every_two(x) * sin) |
|
|
|
|
|
def apply_rotary_pos_emb_new(x, sincos, offset=0): |
|
sin, cos = map( |
|
lambda t: t[:, :, None, :].repeat_interleave(2, 3), |
|
sincos, |
|
) |
|
|
|
return (x * cos) + (rotate_every_two(x) * sin) |
|
|
|
|
|
class PositionalEmbedding(nn.Module): |
|
def __init__(self, demb): |
|
super().__init__() |
|
|
|
self.demb = demb |
|
|
|
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
def forward(self, pos_seq, bsz=None): |
|
sinusoid_inp = torch.ger(pos_seq, self.inv_freq) |
|
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) |
|
|
|
if bsz is not None: |
|
return pos_emb[None, :, :].expand(bsz, -1, -1) |
|
else: |
|
return pos_emb[None, :, :] |
|
|
|
|
|
class FixedAbsolutePositionalEmbedding(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
t = torch.arange(16384).type_as(inv_freq) |
|
sinusoid_inp = torch.einsum("i , j -> i j", t, inv_freq) |
|
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) |
|
self.embed = nn.Embedding.from_pretrained(emb, freeze=True) |
|
|
|
def forward(self, position_ids: torch.Tensor): |
|
return self.embed(position_ids.long()) |
|
|
|
|
|
class FixedRotaryPositionalEmbedding(nn.Module): |
|
def __init__( |
|
self, rotary_dim: int, rotary_base: int = 10000, max_position: int = 16384 |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
inv_freq = 1.0 / ( |
|
rotary_base ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim) |
|
) |
|
|
|
|
|
t = torch.arange(max_position, device=inv_freq.device, dtype=inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, inv_freq) |
|
|
|
sins = torch.sin(freqs) |
|
coss = torch.cos(freqs) |
|
|
|
emb = torch.cat([sins, coss], dim=-1) |
|
self.embed = nn.Embedding.from_pretrained(emb, freeze=True) |
|
|
|
def forward(self, position_ids: torch.Tensor): |
|
return self.embed(position_ids.long()) |
|
|
|
|
|
class CustomT5Attention(T5Attention): |
|
def __init__(self, config: T5Config, has_relative_attention_bias=False): |
|
super(T5Attention, self).__init__() |
|
self.is_decoder = config.is_decoder |
|
self.has_relative_attention_bias = has_relative_attention_bias |
|
|
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets |
|
self.d_model = config.d_model |
|
self.key_value_proj_dim = config.d_kv |
|
self.d_head = config.d_kv |
|
self.n_heads = config.num_heads |
|
self.dropout = config.dropout_rate |
|
self.inner_dim = self.n_heads * self.key_value_proj_dim |
|
|
|
|
|
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) |
|
|
|
self.position_encoding_type = getattr( |
|
config, "position_encoding_type", POSITION_ENCODING_REL_T5_BIAS |
|
) |
|
|
|
if self.has_relative_attention_bias: |
|
self.relative_attention_bias = nn.Embedding( |
|
self.relative_attention_num_buckets, self.n_heads |
|
) |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_REL_TRANSFORMER_XL: |
|
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_heads, self.d_head)) |
|
nn.init.normal_( |
|
self.r_r_bias, mean=0.0, std=config.initializer_factor * 0.2 |
|
) |
|
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_heads, self.d_head)) |
|
nn.init.normal_( |
|
self.r_w_bias, mean=0.0, std=config.initializer_factor * 0.2 |
|
) |
|
self.r = nn.Linear(self.d_model, self.n_heads * self.d_head, bias=False) |
|
self.r.weight.data.normal_( |
|
mean=0.0, std=config.initializer_factor * (self.d_model**-0.5) |
|
) |
|
self.pos_emb = PositionalEmbedding(self.d_model) |
|
self.clamp_length = 1000 |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_ROTARY: |
|
self.rotary_dim = None |
|
if getattr(config, "rotary_dim", None) is not None: |
|
self.rotary_dim = config.rotary_dim |
|
self.rotary_dim = int(0.25 * self.d_head) |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW: |
|
|
|
self.rotary_dim = self.d_head // 4 |
|
|
|
self.pruned_heads = set() |
|
self.gradient_checkpointing = False |
|
|
|
def _rel_shift(self, x): |
|
zero_pad_shape = x.size()[:2] + (x.size(2), 1) |
|
zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype) |
|
x_padded = torch.cat([zero_pad, x], dim=3) |
|
x_padded_shape = x.size()[:2] + (x.size(3) + 1, x.size(2)) |
|
x_padded = x_padded.view(*x_padded_shape) |
|
x = x_padded[:, :, 1:, :].view_as(x) |
|
return x |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
position_bias=None, |
|
key_value_states=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
assert ( |
|
len(past_key_value) == 2 |
|
), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states" |
|
real_seq_length += ( |
|
past_key_value[0].shape[2] if query_length is None else query_length |
|
) |
|
|
|
key_length = ( |
|
real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
) |
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view( |
|
batch_size, -1, self.n_heads, self.key_value_proj_dim |
|
).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return ( |
|
states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
query_states = shape( |
|
self.q(hidden_states) |
|
) |
|
|
|
if self.position_encoding_type in [ |
|
POSITION_ENCODING_ROTARY, |
|
POSITION_ENCODING_ROTARY_NEW, |
|
]: |
|
key_states = shape(self.k(hidden_states)) |
|
else: |
|
|
|
key_states = project( |
|
hidden_states, |
|
self.k, |
|
key_value_states, |
|
past_key_value[0] if past_key_value is not None else None, |
|
) |
|
|
|
value_states = project( |
|
hidden_states, |
|
self.v, |
|
key_value_states, |
|
past_key_value[1] if past_key_value is not None else None, |
|
) |
|
|
|
attention_output_dict = {} |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_REL_T5_BIAS: |
|
scores = torch.matmul(query_states, key_states.transpose(3, 2)) |
|
attention_output_dict["scores_before"] = scores |
|
if position_bias is None: |
|
if not self.has_relative_attention_bias: |
|
position_bias = torch.zeros( |
|
(1, self.n_heads, real_seq_length, key_length), |
|
device=scores.device, |
|
dtype=scores.dtype, |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
position_bias.requires_grad = True |
|
else: |
|
position_bias = self.compute_bias(real_seq_length, key_length) |
|
|
|
|
|
|
|
if past_key_value is not None: |
|
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] |
|
|
|
if mask is not None: |
|
position_bias = ( |
|
position_bias + mask |
|
) |
|
|
|
scores += position_bias |
|
elif self.position_encoding_type == POSITION_ENCODING_REL_TRANSFORMER_XL: |
|
if position_bias is None: |
|
pos_seq = torch.arange( |
|
real_seq_length - 1, |
|
-1, |
|
-1.0, |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
) |
|
if self.clamp_length > 0: |
|
pos_seq = pos_seq.clamp_(max=self.clamp_length) |
|
position_bias = self.pos_emb(pos_seq) |
|
position_bias = nn.functional.dropout( |
|
position_bias, p=self.dropout, training=self.training |
|
) |
|
|
|
position_embeds = position_bias |
|
|
|
r_head_k = self.r(position_embeds) |
|
r_head_k = r_head_k.view( |
|
position_embeds.shape[1], self.n_heads, self.d_head |
|
) |
|
|
|
rw_head_q = query_states + self.r_w_bias[None, :, None, :] |
|
AC = torch.einsum("bnqd,bnkd->bnqk", (rw_head_q, key_states)) |
|
|
|
rr_head_q = query_states + self.r_r_bias[None, :, None, :] |
|
BD = torch.einsum("bnid,jnd->bnij", (rr_head_q, r_head_k)) |
|
BD = self._rel_shift(BD) |
|
|
|
scores = AC + BD |
|
|
|
if mask is not None: |
|
scores += mask |
|
elif self.position_encoding_type == POSITION_ENCODING_ROTARY: |
|
r_seq_len = hidden_states.shape[1] |
|
r_offset = 0 |
|
|
|
if past_key_value is not None: |
|
r_offset = past_key_value[0].shape[2] |
|
r_seq_len += r_offset |
|
|
|
query_states = query_states.permute(0, 2, 1, 3) |
|
key_states = key_states.permute(0, 2, 1, 3) |
|
|
|
if self.rotary_dim is not None: |
|
k_rot = key_states[:, :, :, : self.rotary_dim] |
|
k_pass = key_states[:, :, :, self.rotary_dim :] |
|
|
|
q_rot = query_states[:, :, :, : self.rotary_dim] |
|
q_pass = query_states[:, :, :, self.rotary_dim :] |
|
|
|
sincos = fixed_pos_embedding(k_rot, 1, seq_len=r_seq_len) |
|
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=r_offset) |
|
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=r_offset) |
|
|
|
if output_attentions: |
|
scores_pass = torch.matmul( |
|
q_pass.permute(0, 2, 1, 3), |
|
k_pass.permute(0, 2, 1, 3).transpose(3, 2), |
|
) |
|
attention_output_dict["scores_pass"] = scores_pass |
|
|
|
scores_rot = torch.matmul( |
|
q_rot.permute(0, 2, 1, 3), |
|
k_rot.permute(0, 2, 1, 3).transpose(3, 2), |
|
) |
|
attention_output_dict["scores_rot"] = scores_rot |
|
|
|
key_states = torch.cat([k_rot, k_pass], dim=-1) |
|
query_states = torch.cat([q_rot, q_pass], dim=-1) |
|
else: |
|
sincos = fixed_pos_embedding(key_states, 1, seq_len=r_seq_len) |
|
key_states = apply_rotary_pos_emb(key_states, sincos, offset=r_offset) |
|
query_states = apply_rotary_pos_emb( |
|
query_states, sincos, offset=r_offset |
|
) |
|
|
|
query_states = query_states.permute(0, 2, 1, 3) |
|
key_states = key_states.permute(0, 2, 1, 3) |
|
|
|
if past_key_value is not None: |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
|
|
scores = torch.matmul( |
|
query_states, key_states.transpose(3, 2) |
|
) |
|
if mask is not None: |
|
scores += mask |
|
|
|
elif self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW: |
|
r_seq_len = hidden_states.shape[1] |
|
r_offset = 0 |
|
|
|
if past_key_value is not None: |
|
r_offset = past_key_value[0].shape[2] |
|
r_seq_len += r_offset |
|
|
|
query_states = query_states.permute(0, 2, 1, 3) |
|
key_states = key_states.permute(0, 2, 1, 3) |
|
|
|
if self.rotary_dim is not None: |
|
k_rot = key_states[:, :, :, : self.rotary_dim] |
|
k_pass = key_states[:, :, :, self.rotary_dim :] |
|
|
|
q_rot = query_states[:, :, :, : self.rotary_dim] |
|
q_pass = query_states[:, :, :, self.rotary_dim :] |
|
|
|
sincos = position_bias |
|
|
|
|
|
sin = sincos[:, :, : self.rotary_dim // 2] |
|
cos = sincos[:, :, self.rotary_dim // 2 :] |
|
|
|
|
|
|
|
k_rot = apply_rotary_pos_emb_new(k_rot, (sin, cos)) |
|
q_rot = apply_rotary_pos_emb_new(q_rot, (sin, cos)) |
|
|
|
key_states = torch.cat([k_rot, k_pass], dim=-1) |
|
query_states = torch.cat([q_rot, q_pass], dim=-1) |
|
else: |
|
raise ValueError("rotary_dim is None") |
|
|
|
query_states = query_states.permute(0, 2, 1, 3) |
|
key_states = key_states.permute(0, 2, 1, 3) |
|
|
|
if past_key_value is not None: |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
|
|
scores = torch.matmul( |
|
query_states, key_states.transpose(3, 2) |
|
) |
|
if mask is not None: |
|
scores += mask |
|
elif self.position_encoding_type == POSITION_ENCODING_ALiBi: |
|
scores = torch.matmul(query_states, key_states.transpose(3, 2)) |
|
attention_output_dict["scores_before"] = scores |
|
|
|
alibi = position_bias |
|
alibi = alibi.view(batch_size, self.n_heads, 1, key_length) |
|
|
|
|
|
|
|
if past_key_value is not None: |
|
alibi = alibi[:, :, -hidden_states.size(1) :, :] |
|
|
|
if mask is not None: |
|
alibi = alibi + mask |
|
|
|
scores += alibi |
|
else: |
|
assert ( |
|
self.position_encoding_type == POSITION_ENCODING_NONE |
|
), f"Unknown position encoding type: {self.position_encoding_type}" |
|
scores = torch.matmul( |
|
query_states, key_states.transpose(3, 2) |
|
) |
|
if mask is not None: |
|
scores += mask |
|
|
|
attention_output_dict["scores"] = scores |
|
|
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( |
|
scores |
|
) |
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=self.dropout, training=self.training |
|
) |
|
|
|
|
|
if layer_head_mask is not None: |
|
attn_weights = attn_weights * layer_head_mask |
|
|
|
attention_output_dict["probs"] = attn_weights |
|
|
|
attn_output = unshape( |
|
torch.matmul(attn_weights, value_states) |
|
) |
|
attn_output = self.o(attn_output) |
|
|
|
present_key_value_state = ( |
|
(key_states, value_states) if (self.is_decoder and use_cache) else None |
|
) |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attention_output_dict,) |
|
return outputs |
|
|
|
|
|
class CustomT5LayerSelfAttention(T5LayerSelfAttention): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super(T5LayerSelfAttention, self).__init__() |
|
self.SelfAttention = CustomT5Attention( |
|
config, has_relative_attention_bias=has_relative_attention_bias |
|
) |
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
|
|
class CustomT5Block(T5Block): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super(T5Block, self).__init__() |
|
self.is_decoder = config.is_decoder |
|
assert self.is_decoder |
|
self.layer = nn.ModuleList() |
|
self.layer.append( |
|
CustomT5LayerSelfAttention( |
|
config, has_relative_attention_bias=has_relative_attention_bias |
|
) |
|
) |
|
if self.is_decoder: |
|
self.layer.append(T5LayerCrossAttention(config)) |
|
|
|
self.layer.append(T5LayerFF(config)) |
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
""" |
|
Make causal mask used for self-attention. |
|
""" |
|
batch_size, target_length = input_ids_shape |
|
mask = torch.empty( |
|
(target_length, target_length + past_key_values_length), |
|
dtype=torch.bool, |
|
device=device, |
|
) |
|
|
|
seq_ids = torch.arange(target_length, device=device) |
|
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] |
|
|
|
if past_key_values_length > 0: |
|
mask[:, :past_key_values_length] = False |
|
|
|
expanded_mask = mask[None, None, :, :].expand( |
|
batch_size, 1, target_length, target_length + past_key_values_length |
|
) |
|
return expanded_mask |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: |
|
""" |
|
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. |
|
""" |
|
batch_size, src_length = mask.shape |
|
tgt_length = tgt_length if tgt_length is not None else src_length |
|
|
|
expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) |
|
return expanded_mask.expand(batch_size, 1, tgt_length, src_length) |
|
|
|
|
|
def build_alibi_tensor( |
|
attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype |
|
) -> torch.Tensor: |
|
""" |
|
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it |
|
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value |
|
`softmax(l+a) = softmax(l)`. Based on |
|
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 |
|
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. |
|
Args: |
|
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) |
|
attention_mask (`torch.Tensor`): |
|
Token-wise attention mask, this should be of shape (batch_size, max_seq_len). |
|
num_heads (`int`, *required*): |
|
number of heads |
|
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): |
|
dtype of the output tensor |
|
""" |
|
if len(attention_mask.shape) == 2: |
|
batch_size, seq_length = attention_mask.shape |
|
elif len(attention_mask.shape) == 3: |
|
batch_size, _, seq_length = attention_mask.shape |
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) |
|
base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), |
|
device=attention_mask.device, |
|
dtype=torch.float32, |
|
) |
|
powers = torch.arange( |
|
1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32 |
|
) |
|
slopes = torch.pow(base, powers) |
|
|
|
if closest_power_of_2 != num_heads: |
|
extra_base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), |
|
device=attention_mask.device, |
|
dtype=torch.float32, |
|
) |
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) |
|
extra_powers = torch.arange( |
|
1, |
|
1 + 2 * num_remaining_heads, |
|
2, |
|
device=attention_mask.device, |
|
dtype=torch.int32, |
|
) |
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] |
|
alibi = slopes[..., None] * arange_tensor |
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) |
|
|
|
|
|
class CustomT5Stack(T5Stack): |
|
def __init__(self, config, embed_tokens=None): |
|
super(T5Stack, self).__init__(config) |
|
|
|
self.embed_tokens = embed_tokens |
|
self.is_decoder = config.is_decoder |
|
self.position_encoding_type = getattr( |
|
config, "position_encoding_type", POSITION_ENCODING_REL_T5_BIAS |
|
) |
|
|
|
logger.info(f"position_encoding_type: {self.position_encoding_type}") |
|
|
|
self.block = nn.ModuleList( |
|
[ |
|
CustomT5Block(config, has_relative_attention_bias=bool(i == 0)) |
|
for i in range(config.num_layers) |
|
] |
|
) |
|
self.final_layer_norm = T5LayerNorm( |
|
config.d_model, eps=config.layer_norm_epsilon |
|
) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_ABS_LEARNED: |
|
self.wpe = nn.Embedding(2048, config.d_model) |
|
parent_dir = Path(os.path.dirname(os.path.abspath(__file__))) |
|
learned_embed_file = parent_dir / "gpt_neo_125m_pos_embed.npy" |
|
if learned_embed_file.exists(): |
|
logger.info( |
|
"Loading position embedding from {}".format(learned_embed_file) |
|
) |
|
import numpy as np |
|
|
|
weight = np.load(str(learned_embed_file)) |
|
self.wpe.weight.data.copy_(torch.from_numpy(weight)) |
|
self.wpe.weight.requires_grad = False |
|
else: |
|
self.wpe.weight.data.normal_( |
|
mean=0.0, std=config.initializer_factor * 1.0 |
|
) |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_ABS_SINUSOID: |
|
self.wpe = FixedAbsolutePositionalEmbedding(config.d_model) |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW: |
|
|
|
|
|
|
|
rotary_dim = int(config.d_kv * 0.25) |
|
self.fixed_rotary_embedding = FixedRotaryPositionalEmbedding( |
|
rotary_dim, max_position=4096 |
|
) |
|
|
|
if self.position_encoding_type in [ |
|
POSITION_ENCODING_ALiBi, |
|
POSITION_ENCODING_ALiBi_LEARNED, |
|
]: |
|
maxpos = 2048 |
|
attn_heads = config.num_heads |
|
if self.position_encoding_type == POSITION_ENCODING_ALiBi_LEARNED: |
|
self.learned_logslopes = nn.Parameter( |
|
torch.log(torch.Tensor(self.get_slopes(attn_heads))) |
|
) |
|
else: |
|
slopes = torch.Tensor(self.get_slopes(attn_heads)) |
|
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange( |
|
maxpos |
|
).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1) |
|
alibi = alibi.view(attn_heads, 1, maxpos) |
|
self.register_buffer("alibi", alibi) |
|
|
|
|
|
self.post_init() |
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
|
|
self.window_size = 80 |
|
|
|
def _alibi_prepare_attn_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_shape: Tuple[int, int], |
|
past_key_values_length: int, |
|
) -> torch.BoolTensor: |
|
|
|
|
|
combined_attention_mask = None |
|
device = attention_mask.device |
|
_, src_length = input_shape |
|
|
|
if src_length > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
device=device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) |
|
combined_attention_mask = ( |
|
expanded_attn_mask |
|
if combined_attention_mask is None |
|
else expanded_attn_mask | combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def get_slopes(self, n): |
|
def get_slopes_power_of_2(n): |
|
start = 2 ** (-(2 ** -(math.log2(n) - 3))) |
|
ratio = start |
|
return [start * ratio**i for i in range(n)] |
|
|
|
if math.log2(n).is_integer(): |
|
return get_slopes_power_of_2( |
|
n |
|
) |
|
else: |
|
closest_power_of_2 = 2 ** math.floor( |
|
math.log2(n) |
|
) |
|
return ( |
|
get_slopes_power_of_2(closest_power_of_2) |
|
+ self.get_slopes(2 * closest_power_of_2)[0::2][ |
|
: n - closest_power_of_2 |
|
] |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
position_ids=None, |
|
return_dict=None, |
|
): |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.first_device) |
|
self.embed_tokens = self.embed_tokens.to(self.first_device) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError( |
|
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError( |
|
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds" |
|
) |
|
|
|
if inputs_embeds is None: |
|
assert ( |
|
self.embed_tokens is not None |
|
), "You have to initialize the model with valid token embeddings" |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if self.position_encoding_type in [ |
|
POSITION_ENCODING_ABS_LEARNED, |
|
POSITION_ENCODING_ABS_SINUSOID, |
|
]: |
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
position_embeds = self.wpe(position_ids) |
|
inputs_embeds += position_embeds |
|
|
|
batch_size, seq_length = input_shape |
|
|
|
|
|
position_bias = None |
|
|
|
|
|
mask_seq_length = ( |
|
past_key_values[0][0].shape[2] + seq_length |
|
if past_key_values is not None |
|
else seq_length |
|
) |
|
|
|
if use_cache is True: |
|
assert ( |
|
self.is_decoder |
|
), f"`use_cache` can only be set to `True` if {self} is used as a decoder" |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(batch_size, mask_seq_length).to( |
|
inputs_embeds.device |
|
) |
|
if ( |
|
self.is_decoder |
|
and encoder_attention_mask is None |
|
and encoder_hidden_states is not None |
|
): |
|
encoder_seq_length = encoder_hidden_states.shape[1] |
|
encoder_attention_mask = torch.ones( |
|
batch_size, |
|
encoder_seq_length, |
|
device=inputs_embeds.device, |
|
dtype=torch.long, |
|
) |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW: |
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
sinusoidal_pos = self.fixed_rotary_embedding(position_ids) |
|
position_bias = sinusoidal_pos |
|
|
|
|
|
if past_key_values is None: |
|
past_key_values = [None] * len(self.block) |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_NONE_WINDOW: |
|
indices = torch.arange(seq_length, device=inputs_embeds.device) |
|
causal_mask = indices[:, None] >= indices |
|
window_mask = ( |
|
(indices.unsqueeze(0) - indices.unsqueeze(0).T) |
|
.abs() |
|
.less(self.window_size) |
|
) |
|
causal_mask = causal_mask & window_mask |
|
attention_mask = causal_mask.int() |
|
|
|
|
|
attention_mask = attention_mask[None, :, :].expand( |
|
batch_size, seq_length, seq_length |
|
) |
|
|
|
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask( |
|
attention_mask, input_shape, inputs_embeds.device |
|
) |
|
|
|
if self.position_encoding_type == POSITION_ENCODING_ALiBi: |
|
num_heads = self.config.num_heads |
|
if len(attention_mask.shape) == 3: |
|
|
|
alibi_attention_mask = torch.ones(batch_size, mask_seq_length).to( |
|
inputs_embeds.device |
|
) |
|
else: |
|
alibi_attention_mask = attention_mask |
|
|
|
alibi = build_alibi_tensor( |
|
alibi_attention_mask, num_heads, dtype=inputs_embeds.dtype |
|
) |
|
position_bias = alibi |
|
del alibi_attention_mask |
|
|
|
if self.position_encoding_type in [POSITION_ENCODING_ALiBi_LEARNED]: |
|
if not hasattr(self, "alibi"): |
|
maxpos = 2048 |
|
attn_heads = self.config.num_heads |
|
slopes = self.learned_logslopes.exp() |
|
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange( |
|
maxpos, device=slopes.device |
|
).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1) |
|
alibi = alibi.view(attn_heads, 1, maxpos) |
|
else: |
|
alibi = self.alibi |
|
|
|
alibi = alibi.unsqueeze(0).repeat(batch_size, 1, 1, 1) |
|
alibi = alibi[:, :, :, : attention_mask.shape[-1]] |
|
alibi = alibi.repeat(1, 1, extended_attention_mask.shape[2], 1) |
|
extended_attention_mask = torch.where( |
|
extended_attention_mask == 0, |
|
alibi, |
|
extended_attention_mask.repeat(1, self.config.num_heads, 1, 1), |
|
) |
|
|
|
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None: |
|
( |
|
encoder_batch_size, |
|
encoder_sequence_length, |
|
_, |
|
) = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones( |
|
encoder_hidden_shape, device=inputs_embeds.device |
|
) |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers) |
|
cross_attn_head_mask = self.get_head_mask( |
|
cross_attn_head_mask, self.config.num_layers |
|
) |
|
present_key_value_states = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None |
|
|
|
encoder_decoder_position_bias = None |
|
|
|
hidden_states = self.dropout(inputs_embeds) |
|
|
|
for i, (layer_module, past_key_value) in enumerate( |
|
zip(self.block, past_key_values) |
|
): |
|
layer_head_mask = head_mask[i] |
|
cross_attn_layer_head_mask = cross_attn_head_mask[i] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if position_bias is not None: |
|
position_bias = position_bias.to(hidden_states.device) |
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states = encoder_hidden_states.to( |
|
hidden_states.device |
|
) |
|
if encoder_extended_attention_mask is not None: |
|
encoder_extended_attention_mask = ( |
|
encoder_extended_attention_mask.to(hidden_states.device) |
|
) |
|
if encoder_decoder_position_bias is not None: |
|
encoder_decoder_position_bias = encoder_decoder_position_bias.to( |
|
hidden_states.device |
|
) |
|
if layer_head_mask is not None: |
|
layer_head_mask = layer_head_mask.to(hidden_states.device) |
|
if cross_attn_layer_head_mask is not None: |
|
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to( |
|
hidden_states.device |
|
) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warn( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return tuple(module(*inputs, use_cache, output_attentions)) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
extended_attention_mask, |
|
position_bias, |
|
encoder_hidden_states, |
|
encoder_extended_attention_mask, |
|
encoder_decoder_position_bias, |
|
layer_head_mask, |
|
cross_attn_layer_head_mask, |
|
None, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
position_bias=position_bias, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=layer_head_mask, |
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
|
|
|
|
if use_cache is False: |
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] |
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2] |
|
|
|
|
|
|
|
|
|
position_bias = layer_outputs[2] |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_decoder_position_bias = layer_outputs[ |
|
4 if output_attentions else 3 |
|
] |
|
|
|
if use_cache: |
|
present_key_value_states = present_key_value_states + ( |
|
present_key_value_state, |
|
) |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[3],) |
|
if self.is_decoder: |
|
all_cross_attentions = all_cross_attentions + (None,) |
|
|
|
|
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class CustomDecoderOnlyT5(T5PreTrainedModel): |
|
config_class = CustomT5Config |
|
_keys_to_ignore_on_load_missing = [ |
|
r"decoder\.embed_tokens\.weight", |
|
r"encoder", |
|
r"lm_head\.weight", |
|
] |
|
_keys_to_ignore_on_load_unexpected = [ |
|
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight", |
|
] |
|
|
|
def __init__( |
|
self, |
|
config=None, |
|
output_non_reduced_loss: bool = False, |
|
**kwargs, |
|
): |
|
assert config is not None |
|
config.is_decoder = True |
|
config.is_encoder_decoder = False |
|
|
|
assert ( |
|
config.position_encoding_type is not None |
|
), "Position encoding type must be set" |
|
|
|
self.output_non_reduced_loss = output_non_reduced_loss |
|
self.main_input_name = "input_ids" |
|
|
|
super().__init__(config) |
|
|
|
self.model_dim = config.d_model |
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
self.decoder = CustomT5Stack(config, self.shared) |
|
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
cross_attention_params = [ |
|
p |
|
for n, p in self.decoder.named_parameters() |
|
if n.startswith("block.") and ".layer.1." in n |
|
] |
|
for param in cross_attention_params: |
|
param.requires_grad = False |
|
|
|
|
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def parallelize(self, device_map=None): |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.decoder.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.decoder.first_device) |
|
self.model_parallel = True |
|
|
|
def deparallelize(self): |
|
self.encoder.deparallelize() |
|
self.decoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.decoder = self.decoder.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
"position_ids": position_ids, |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
if input_ids is not None: |
|
input_ids = input_ids.to(self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
|
|
transformer_outputs = self.decoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
position_ids=position_ids, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
head_mask=head_mask, |
|
cross_attn_head_mask=None, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
if self.config.tie_word_embeddings: |
|
|
|
|
|
hidden_states = hidden_states * (self.model_dim**-0.5) |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
non_reduced_loss = None |
|
if labels is not None: |
|
|
|
|
|
lm_logits = lm_logits.to(torch.float32) |
|
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
lm_logits = lm_logits.to(hidden_states.dtype) |
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if self.output_non_reduced_loss: |
|
loss_fct = CrossEntropyLoss(reduction="none") |
|
non_reduced_loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
|
|
non_reduced_loss = non_reduced_loss.view( |
|
shift_labels.shape[0], shift_labels.shape[1] |
|
)[:, -1].view(-1, 1) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPastAndLoss( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
non_reduced_loss=non_reduced_loss, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or |
|
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past |
|
) |
|
for layer_past in past |
|
) |
|
|