File size: 57,240 Bytes
cb16e0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 |
import logging
import math
import os
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.utils.checkpoint import checkpoint
from transformers import T5Config
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
)
from transformers.utils import ModelOutput
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
from .configuration_custom_t5 import (
POSITION_ENCODING_REL_T5_BIAS,
POSITION_ENCODING_REL_TRANSFORMER_XL,
POSITION_ENCODING_ROTARY,
POSITION_ENCODING_ROTARY_NEW,
POSITION_ENCODING_ABS_LEARNED,
POSITION_ENCODING_ABS_SINUSOID,
POSITION_ENCODING_ALiBi,
POSITION_ENCODING_ALiBi_LEARNED,
POSITION_ENCODING_NONE,
POSITION_ENCODING_NONE_WINDOW,
CustomT5Config,
)
from .modeling_t5 import (
T5Stack,
T5PreTrainedModel,
T5Block,
T5LayerNorm,
T5LayerFF,
T5LayerSelfAttention,
T5Attention,
T5LayerCrossAttention,
)
logger = logging.getLogger(__name__)
@dataclass
class CausalLMOutputWithPastAndLoss(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
non_reduced_loss: Optional[torch.FloatTensor] = None
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
dim = x.shape[-1]
if seq_len is None:
seq_len = x.shape[seq_dim]
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
sinusoid_inp = (
torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq)
.to(x.device)
.float()
)
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
def rotate_every_two(x):
"""
Example: [a, b, c, d] -> [-b, a, -d, c]
"""
x1 = x[:, :, :, ::2]
x2 = x[:, :, :, 1::2]
x = torch.stack((-x2, x1), axis=-1)
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
def apply_rotary_pos_emb(x, sincos, offset=0):
sin, cos = map(
lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(
2, 3
),
sincos,
)
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
return (x * cos) + (rotate_every_two(x) * sin)
def apply_rotary_pos_emb_new(x, sincos, offset=0):
sin, cos = map(
lambda t: t[:, :, None, :].repeat_interleave(2, 3),
sincos,
)
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
return (x * cos) + (rotate_every_two(x) * sin)
class PositionalEmbedding(nn.Module):
def __init__(self, demb):
super().__init__()
self.demb = demb
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
self.register_buffer("inv_freq", inv_freq)
def forward(self, pos_seq, bsz=None):
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
if bsz is not None:
return pos_emb[None, :, :].expand(bsz, -1, -1)
else:
return pos_emb[None, :, :]
class FixedAbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
t = torch.arange(16384).type_as(inv_freq)
sinusoid_inp = torch.einsum("i , j -> i j", t, inv_freq)
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
self.embed = nn.Embedding.from_pretrained(emb, freeze=True)
def forward(self, position_ids: torch.Tensor):
return self.embed(position_ids.long())
class FixedRotaryPositionalEmbedding(nn.Module):
def __init__(
self, rotary_dim: int, rotary_base: int = 10000, max_position: int = 16384
):
super().__init__()
# This is an inverse frequency tensor
# Each dimension has a higher denominator than the previous one
# So, the frequency will be lower for higher dimensions
inv_freq = 1.0 / (
rotary_base ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim)
) # [rotary_dim/2]
# Now, we create frequencies for each position
t = torch.arange(max_position, device=inv_freq.device, dtype=inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, inv_freq) # [max_position, rotary_dim/2]
sins = torch.sin(freqs)
coss = torch.cos(freqs)
emb = torch.cat([sins, coss], dim=-1) # [max_position, rotary_dim]
self.embed = nn.Embedding.from_pretrained(emb, freeze=True)
def forward(self, position_ids: torch.Tensor):
return self.embed(position_ids.long())
class CustomT5Attention(T5Attention):
def __init__(self, config: T5Config, has_relative_attention_bias=False):
super(T5Attention, self).__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.d_head = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
self.position_encoding_type = getattr(
config, "position_encoding_type", POSITION_ENCODING_REL_T5_BIAS
)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(
self.relative_attention_num_buckets, self.n_heads
)
if self.position_encoding_type == POSITION_ENCODING_REL_TRANSFORMER_XL:
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_heads, self.d_head))
nn.init.normal_(
self.r_r_bias, mean=0.0, std=config.initializer_factor * 0.2
)
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_heads, self.d_head))
nn.init.normal_(
self.r_w_bias, mean=0.0, std=config.initializer_factor * 0.2
)
self.r = nn.Linear(self.d_model, self.n_heads * self.d_head, bias=False)
self.r.weight.data.normal_(
mean=0.0, std=config.initializer_factor * (self.d_model**-0.5)
)
self.pos_emb = PositionalEmbedding(self.d_model)
self.clamp_length = 1000
if self.position_encoding_type == POSITION_ENCODING_ROTARY:
self.rotary_dim = None
if getattr(config, "rotary_dim", None) is not None:
self.rotary_dim = config.rotary_dim
self.rotary_dim = int(0.25 * self.d_head)
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
# We hardcode the rotary dim to 25 percent of the head dim
self.rotary_dim = self.d_head // 4
self.pruned_heads = set()
self.gradient_checkpointing = False
def _rel_shift(self, x):
zero_pad_shape = x.size()[:2] + (x.size(2), 1)
zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=3)
x_padded_shape = x.size()[:2] + (x.size(3) + 1, x.size(2))
x_padded = x_padded.view(*x_padded_shape)
x = x_padded[:, :, 1:, :].view_as(x)
return x
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
key_value_states=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
assert (
len(past_key_value) == 2
), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states"
real_seq_length += (
past_key_value[0].shape[2] if query_length is None else query_length
)
key_length = (
real_seq_length if key_value_states is None else key_value_states.shape[1]
)
def shape(states):
"""projection"""
return states.view(
batch_size, -1, self.n_heads, self.key_value_proj_dim
).transpose(1, 2)
def unshape(states):
"""reshape"""
return (
states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states
query_states = shape(
self.q(hidden_states)
) # (batch_size, n_heads, seq_length, dim_per_head)
if self.position_encoding_type in [
POSITION_ENCODING_ROTARY,
POSITION_ENCODING_ROTARY_NEW,
]:
key_states = shape(self.k(hidden_states))
else:
# get key/value states
key_states = project(
hidden_states,
self.k,
key_value_states,
past_key_value[0] if past_key_value is not None else None,
)
value_states = project(
hidden_states,
self.v,
key_value_states,
past_key_value[1] if past_key_value is not None else None,
)
attention_output_dict = {}
if self.position_encoding_type == POSITION_ENCODING_REL_T5_BIAS:
scores = torch.matmul(query_states, key_states.transpose(3, 2))
attention_output_dict["scores_before"] = scores
if position_bias is None:
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, real_seq_length, key_length),
device=scores.device,
dtype=scores.dtype,
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(real_seq_length, key_length)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if mask is not None:
position_bias = (
position_bias + mask
) # (batch_size, n_heads, seq_length, key_length)
scores += position_bias
elif self.position_encoding_type == POSITION_ENCODING_REL_TRANSFORMER_XL:
if position_bias is None:
pos_seq = torch.arange(
real_seq_length - 1,
-1,
-1.0,
device=hidden_states.device,
dtype=hidden_states.dtype,
)
if self.clamp_length > 0:
pos_seq = pos_seq.clamp_(max=self.clamp_length)
position_bias = self.pos_emb(pos_seq)
position_bias = nn.functional.dropout(
position_bias, p=self.dropout, training=self.training
)
position_embeds = position_bias # position embeds: [1, seq_len, d_model]
r_head_k = self.r(position_embeds) # [1, seq_len, n_head*d_head]
r_head_k = r_head_k.view(
position_embeds.shape[1], self.n_heads, self.d_head
) # [seq_len, n_head, d_head]
rw_head_q = query_states + self.r_w_bias[None, :, None, :]
AC = torch.einsum("bnqd,bnkd->bnqk", (rw_head_q, key_states))
rr_head_q = query_states + self.r_r_bias[None, :, None, :]
BD = torch.einsum("bnid,jnd->bnij", (rr_head_q, r_head_k))
BD = self._rel_shift(BD)
scores = AC + BD
if mask is not None:
scores += mask
elif self.position_encoding_type == POSITION_ENCODING_ROTARY:
r_seq_len = hidden_states.shape[1]
r_offset = 0
if past_key_value is not None:
r_offset = past_key_value[0].shape[2]
r_seq_len += r_offset
query_states = query_states.permute(0, 2, 1, 3)
key_states = key_states.permute(0, 2, 1, 3)
if self.rotary_dim is not None:
k_rot = key_states[:, :, :, : self.rotary_dim]
k_pass = key_states[:, :, :, self.rotary_dim :]
q_rot = query_states[:, :, :, : self.rotary_dim]
q_pass = query_states[:, :, :, self.rotary_dim :]
sincos = fixed_pos_embedding(k_rot, 1, seq_len=r_seq_len)
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=r_offset)
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=r_offset)
if output_attentions:
scores_pass = torch.matmul(
q_pass.permute(0, 2, 1, 3),
k_pass.permute(0, 2, 1, 3).transpose(3, 2),
)
attention_output_dict["scores_pass"] = scores_pass
scores_rot = torch.matmul(
q_rot.permute(0, 2, 1, 3),
k_rot.permute(0, 2, 1, 3).transpose(3, 2),
)
attention_output_dict["scores_rot"] = scores_rot
key_states = torch.cat([k_rot, k_pass], dim=-1)
query_states = torch.cat([q_rot, q_pass], dim=-1)
else:
sincos = fixed_pos_embedding(key_states, 1, seq_len=r_seq_len)
key_states = apply_rotary_pos_emb(key_states, sincos, offset=r_offset)
query_states = apply_rotary_pos_emb(
query_states, sincos, offset=r_offset
)
query_states = query_states.permute(0, 2, 1, 3)
key_states = key_states.permute(0, 2, 1, 3)
if past_key_value is not None:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if mask is not None:
scores += mask # (batch_size, n_heads, seq_length, key_length)
elif self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
r_seq_len = hidden_states.shape[1]
r_offset = 0
if past_key_value is not None:
r_offset = past_key_value[0].shape[2]
r_seq_len += r_offset
query_states = query_states.permute(0, 2, 1, 3)
key_states = key_states.permute(0, 2, 1, 3)
if self.rotary_dim is not None:
k_rot = key_states[:, :, :, : self.rotary_dim]
k_pass = key_states[:, :, :, self.rotary_dim :]
q_rot = query_states[:, :, :, : self.rotary_dim]
q_pass = query_states[:, :, :, self.rotary_dim :]
sincos = position_bias
# sincos is just vector created by torch.cat([sin, cos], dim=-1)
# so we can just split it in half
sin = sincos[:, :, : self.rotary_dim // 2]
cos = sincos[:, :, self.rotary_dim // 2 :]
# We don't need to pass offset here, because we already used
# position_ids to retrieve correct sin and cos vectors
k_rot = apply_rotary_pos_emb_new(k_rot, (sin, cos))
q_rot = apply_rotary_pos_emb_new(q_rot, (sin, cos))
key_states = torch.cat([k_rot, k_pass], dim=-1)
query_states = torch.cat([q_rot, q_pass], dim=-1)
else:
raise ValueError("rotary_dim is None")
query_states = query_states.permute(0, 2, 1, 3)
key_states = key_states.permute(0, 2, 1, 3)
if past_key_value is not None:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if mask is not None:
scores += mask # (batch_size, n_heads, seq_length, key_length)
elif self.position_encoding_type == POSITION_ENCODING_ALiBi:
scores = torch.matmul(query_states, key_states.transpose(3, 2))
attention_output_dict["scores_before"] = scores
alibi = position_bias
alibi = alibi.view(batch_size, self.n_heads, 1, key_length)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
alibi = alibi[:, :, -hidden_states.size(1) :, :]
if mask is not None:
alibi = alibi + mask # (batch_size, n_heads, seq_length, key_length)
scores += alibi
else:
assert (
self.position_encoding_type == POSITION_ENCODING_NONE
), f"Unknown position encoding type: {self.position_encoding_type}"
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if mask is not None:
scores += mask # (batch_size, n_heads, seq_length, key_length)
attention_output_dict["scores"] = scores
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
scores
) # (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
) # (batch_size, n_heads, seq_length, key_length)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attention_output_dict["probs"] = attn_weights
attn_output = unshape(
torch.matmul(attn_weights, value_states)
) # (batch_size, seq_length, dim)
attn_output = self.o(attn_output)
present_key_value_state = (
(key_states, value_states) if (self.is_decoder and use_cache) else None
)
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attention_output_dict,)
return outputs
class CustomT5LayerSelfAttention(T5LayerSelfAttention):
def __init__(self, config, has_relative_attention_bias=False):
super(T5LayerSelfAttention, self).__init__()
self.SelfAttention = CustomT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
class CustomT5Block(T5Block):
def __init__(self, config, has_relative_attention_bias=False):
super(T5Block, self).__init__()
self.is_decoder = config.is_decoder
assert self.is_decoder
self.layer = nn.ModuleList()
self.layer.append(
CustomT5LayerSelfAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
)
if self.is_decoder:
self.layer.append(T5LayerCrossAttention(config))
self.layer.append(T5LayerFF(config))
def _make_causal_mask(
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
"""
Make causal mask used for self-attention.
"""
batch_size, target_length = input_ids_shape
mask = torch.empty(
(target_length, target_length + past_key_values_length),
dtype=torch.bool,
device=device,
)
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
seq_ids = torch.arange(target_length, device=device)
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
if past_key_values_length > 0:
mask[:, :past_key_values_length] = False
expanded_mask = mask[None, None, :, :].expand(
batch_size, 1, target_length, target_length + past_key_values_length
)
return expanded_mask
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
"""
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
"""
batch_size, src_length = mask.shape
tgt_length = tgt_length if tgt_length is not None else src_length
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
def build_alibi_tensor(
attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype
) -> torch.Tensor:
"""
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
`softmax(l+a) = softmax(l)`. Based on
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
Args:
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
attention_mask (`torch.Tensor`):
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
num_heads (`int`, *required*):
number of heads
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
dtype of the output tensor
"""
if len(attention_mask.shape) == 2:
batch_size, seq_length = attention_mask.shape
elif len(attention_mask.shape) == 3:
batch_size, _, seq_length = attention_mask.shape
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))),
device=attention_mask.device,
dtype=torch.float32,
)
powers = torch.arange(
1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32
)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
device=attention_mask.device,
dtype=torch.float32,
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(
1,
1 + 2 * num_remaining_heads,
2,
device=attention_mask.device,
dtype=torch.int32,
)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# => the query_length dimension will then be broadcasted correctly
# This is more or less identical to T5's relative position bias:
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None] * arange_tensor
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
class CustomT5Stack(T5Stack):
def __init__(self, config, embed_tokens=None):
super(T5Stack, self).__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.position_encoding_type = getattr(
config, "position_encoding_type", POSITION_ENCODING_REL_T5_BIAS
)
logger.info(f"position_encoding_type: {self.position_encoding_type}")
self.block = nn.ModuleList(
[
CustomT5Block(config, has_relative_attention_bias=bool(i == 0))
for i in range(config.num_layers)
]
)
self.final_layer_norm = T5LayerNorm(
config.d_model, eps=config.layer_norm_epsilon
)
self.dropout = nn.Dropout(config.dropout_rate)
if self.position_encoding_type == POSITION_ENCODING_ABS_LEARNED:
self.wpe = nn.Embedding(2048, config.d_model)
parent_dir = Path(os.path.dirname(os.path.abspath(__file__)))
learned_embed_file = parent_dir / "gpt_neo_125m_pos_embed.npy"
if learned_embed_file.exists():
logger.info(
"Loading position embedding from {}".format(learned_embed_file)
)
import numpy as np
weight = np.load(str(learned_embed_file))
self.wpe.weight.data.copy_(torch.from_numpy(weight))
self.wpe.weight.requires_grad = False
else:
self.wpe.weight.data.normal_(
mean=0.0, std=config.initializer_factor * 1.0
)
if self.position_encoding_type == POSITION_ENCODING_ABS_SINUSOID:
self.wpe = FixedAbsolutePositionalEmbedding(config.d_model)
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
# Rotary dim is X percentage of d_head
# Right now, we just hardcode X here following:
# https://github.com/huggingface/transformers/blob/v4.26.0/src/transformers/models/gpt_neox/configuration_gpt_neox.py
rotary_dim = int(config.d_kv * 0.25)
self.fixed_rotary_embedding = FixedRotaryPositionalEmbedding(
rotary_dim, max_position=4096
)
if self.position_encoding_type in [
POSITION_ENCODING_ALiBi,
POSITION_ENCODING_ALiBi_LEARNED,
]:
maxpos = 2048
attn_heads = config.num_heads
if self.position_encoding_type == POSITION_ENCODING_ALiBi_LEARNED:
self.learned_logslopes = nn.Parameter(
torch.log(torch.Tensor(self.get_slopes(attn_heads)))
)
else:
slopes = torch.Tensor(self.get_slopes(attn_heads))
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(
maxpos
).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1)
alibi = alibi.view(attn_heads, 1, maxpos)
self.register_buffer("alibi", alibi)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
self.window_size = 80 # only used for none_windowed
def _alibi_prepare_attn_mask(
self,
attention_mask: torch.Tensor,
input_shape: Tuple[int, int],
past_key_values_length: int,
) -> torch.BoolTensor:
# create causal mask
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
combined_attention_mask = None
device = attention_mask.device
_, src_length = input_shape
if src_length > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
device=device,
past_key_values_length=past_key_values_length,
)
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask | combined_attention_mask
)
return combined_attention_mask
def get_slopes(self, n):
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(n).is_integer():
return get_slopes_power_of_2(
n
) # In the paper, we only train models that have 2^a heads for some a. This function has
else: # some good properties that only occur when the input is a power of 2. To maintain that even
closest_power_of_2 = 2 ** math.floor(
math.log2(n)
) # when the number of heads is not a power of 2, we use this workaround.
return (
get_slopes_power_of_2(closest_power_of_2)
+ self.get_slopes(2 * closest_power_of_2)[0::2][
: n - closest_power_of_2
]
)
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
position_ids=None,
return_dict=None,
):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(self.first_device)
self.embed_tokens = self.embed_tokens.to(self.first_device)
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
)
if inputs_embeds is None:
assert (
self.embed_tokens is not None
), "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
if self.position_encoding_type in [
POSITION_ENCODING_ABS_LEARNED,
POSITION_ENCODING_ABS_SINUSOID,
]:
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
else:
past_length = past_key_values[0][0].size(-2)
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(
past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
position_embeds = self.wpe(position_ids)
inputs_embeds += position_embeds
batch_size, seq_length = input_shape
# `position_bias` is a just tensor that is passed to all attention layers
position_bias = None
# required mask seq length can be calculated via length of past
mask_seq_length = (
past_key_values[0][0].shape[2] + seq_length
if past_key_values is not None
else seq_length
)
if use_cache is True:
assert (
self.is_decoder
), f"`use_cache` can only be set to `True` if {self} is used as a decoder"
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length).to(
inputs_embeds.device
)
if (
self.is_decoder
and encoder_attention_mask is None
and encoder_hidden_states is not None
):
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size,
encoder_seq_length,
device=inputs_embeds.device,
dtype=torch.long,
)
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
else:
past_length = past_key_values[0][0].size(-2)
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(
past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
sinusoidal_pos = self.fixed_rotary_embedding(position_ids)
position_bias = sinusoidal_pos
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
if self.position_encoding_type == POSITION_ENCODING_NONE_WINDOW:
indices = torch.arange(seq_length, device=inputs_embeds.device)
causal_mask = indices[:, None] >= indices
window_mask = (
(indices.unsqueeze(0) - indices.unsqueeze(0).T)
.abs()
.less(self.window_size)
)
causal_mask = causal_mask & window_mask
attention_mask = causal_mask.int()
# Repeat the mask for each sample in the batch
attention_mask = attention_mask[None, :, :].expand(
batch_size, seq_length, seq_length
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape, inputs_embeds.device
)
if self.position_encoding_type == POSITION_ENCODING_ALiBi:
num_heads = self.config.num_heads
if len(attention_mask.shape) == 3:
# We need to make a default attention mask
alibi_attention_mask = torch.ones(batch_size, mask_seq_length).to(
inputs_embeds.device
)
else:
alibi_attention_mask = attention_mask
alibi = build_alibi_tensor(
alibi_attention_mask, num_heads, dtype=inputs_embeds.dtype
)
position_bias = alibi
del alibi_attention_mask
if self.position_encoding_type in [POSITION_ENCODING_ALiBi_LEARNED]:
if not hasattr(self, "alibi"):
maxpos = 2048
attn_heads = self.config.num_heads
slopes = self.learned_logslopes.exp()
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(
maxpos, device=slopes.device
).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1)
alibi = alibi.view(attn_heads, 1, maxpos)
else:
alibi = self.alibi
alibi = alibi.unsqueeze(0).repeat(batch_size, 1, 1, 1)
alibi = alibi[:, :, :, : attention_mask.shape[-1]]
alibi = alibi.repeat(1, 1, extended_attention_mask.shape[2], 1)
extended_attention_mask = torch.where(
extended_attention_mask == 0,
alibi,
extended_attention_mask.repeat(1, self.config.num_heads, 1, 1),
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(
encoder_hidden_shape, device=inputs_embeds.device
)
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask
)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(
cross_attn_head_mask, self.config.num_layers
)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
# position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(
zip(self.block, past_key_values)
):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if position_bias is not None:
position_bias = position_bias.to(hidden_states.device)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(
hidden_states.device
)
if encoder_extended_attention_mask is not None:
encoder_extended_attention_mask = (
encoder_extended_attention_mask.to(hidden_states.device)
)
if encoder_decoder_position_bias is not None:
encoder_decoder_position_bias = encoder_decoder_position_bias.to(
hidden_states.device
)
if layer_head_mask is not None:
layer_head_mask = layer_head_mask.to(hidden_states.device)
if cross_attn_layer_head_mask is not None:
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
hidden_states.device
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warn(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return tuple(module(*inputs, use_cache, output_attentions))
return custom_forward
layer_outputs = checkpoint(
create_custom_forward(layer_module),
hidden_states,
extended_attention_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[
4 if output_attentions else 3
]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (
present_key_value_state,
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (None,)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
class CustomDecoderOnlyT5(T5PreTrainedModel):
config_class = CustomT5Config
_keys_to_ignore_on_load_missing = [
r"decoder\.embed_tokens\.weight",
r"encoder",
r"lm_head\.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
]
def __init__(
self,
config=None,
output_non_reduced_loss: bool = False,
**kwargs,
):
assert config is not None
config.is_decoder = True
config.is_encoder_decoder = False
assert (
config.position_encoding_type is not None
), "Position encoding type must be set"
self.output_non_reduced_loss = output_non_reduced_loss
self.main_input_name = "input_ids"
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
self.decoder = CustomT5Stack(config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
#
cross_attention_params = [
p
for n, p in self.decoder.named_parameters()
if n.startswith("block.") and ".layer.1." in n
]
for param in cross_attention_params:
param.requires_grad = False
# self.handle_tokenizer(tokenizer)
def get_decoder(self):
return self.decoder
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.decoder.first_device)
self.model_parallel = True
def deparallelize(self):
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"position_ids": position_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if input_ids is not None:
input_ids = input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
transformer_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
position_ids=position_ids,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=head_mask,
cross_attn_head_mask=None,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
hidden_states = hidden_states * (self.model_dim**-0.5)
lm_logits = self.lm_head(hidden_states)
loss = None
non_reduced_loss = None
if labels is not None:
# Compute loss in fp32 to match with mesh-tf version
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
lm_logits = lm_logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
if self.output_non_reduced_loss:
loss_fct = CrossEntropyLoss(reduction="none")
non_reduced_loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
# Reshape to [batch_size, seq_length - 1]
non_reduced_loss = non_reduced_loss.view(
shift_labels.shape[0], shift_labels.shape[1]
)[:, -1].view(-1, 1)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPastAndLoss(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
non_reduced_loss=non_reduced_loss,
)
@staticmethod
def _reorder_cache(
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
)
for layer_past in past
)
|