Edit model card

Neo-GPT-Title-Generation-Electric-Car

Title generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about "Electric car" - "Electric car for sale".

Pipeline example

import pandas as pd
from transformers import AutoModelForMaskedLM
from transformers import GPT2Tokenizer, TrainingArguments, AutoModelForCausalLM, AutoConfig 

model = AutoModelForCausalLM.from_pretrained('Martian/Neo-GPT-Title-Generation-Electric-Car')

tokenizer = GPT2Tokenizer.from_pretrained('Martian/Neo-GPT-Title-Generation-Electric-Car', bos_token='<|startoftext|>',
                                          eos_token='<|endoftext|>', pad_token='<|pad|>')

prompt = "<|startoftext|> Electric car"

input_ids = tokenizer(prompt, return_tensors="pt").input_ids

gen_tokens = model.generate(input_ids, do_sample=True, top_k=100, min_length = 30, max_length=150, top_p=0.90, num_return_sequences=20, skip_special_tokens=True)

list_title_gen = []

for i, sample_output in enumerate(gen_tokens):
    title = tokenizer.decode(sample_output, skip_special_tokens=True)
    list_title_gen.append(title)
    
for i in list_title_gen:
    try:
        list_title_gen[list_title_gen.index(i)] = i.split(' | ')[0]       
    except:
        continue
    try:
        list_title_gen[list_title_gen.index(i)] = i.split(' - ')[0]
    except:
        continue
    try:
        list_title_gen[list_title_gen.index(i)] = i.split(' — ')[0]
    except:
        continue        

list_title_gen = [sub.replace('�', ' ').replace('\\r',' ').replace('\
',' ').replace('\\t', ' ').replace('\\xa0', '') for sub in list_title_gen]    
list_title_gen = [sub if sub != '<|startoftext|> Electric car' else '' for sub in list_title_gen]  

for i in list_title_gen:
    print(i)

Todo

  • Improve the quality of the training sample
  • Add more data
Downloads last month
34
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.