(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0
.
CoTy-platypus-ko
Poly-platypus-ko + CoT = CoTy-platypus-ko
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
CoTy-platypus-ko is an auto-regressive language model based on the polyglot-ko transformer architecture.
Repo Link
Github CoTy-platypus-ko: CoTy-platypus-ko
Base Model
Polyglot-ko-12.8b
Fine-tuning method
Methodology by KO-Platypus2+CoT-llama2-ko
Training Dataset
I use KoCoT_2000.
I use A100 GPU 40GB and COLAB, when trianing.
Model Bechmark1
KO-LLM leaderboard
- Follow up as Open KO-LLM LeaderBoard.
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
CoTy-platypus-ko-12.8b(ours) | 46.44 | 34.98 | 49.11 | 25.68 | 37.59 | 84.86 |
hyunseoki/ko-en-llama2-13b | 46.68 | 42.15 | 54.23 | 38.90 | 40.74 | 57.39 |
momo/polyglot-ko-12.8b-Chat-QLoRA-Merge | 45.71 | 35.49 | 49.93 | 25.97 | 39.43 | 77.70 |
KoT-platypus2-7B | 45.62 | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 |
DopeorNope/COLA3-7B | 45.61 | 39.16 | 50.98 | 35.21 | 37.81 | 64.91 |
Compare with Top 4 SOTA models. (update: 10/03)
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "MarkrAI/kyujin-CoTy-platypus-ko-12.8b"
CoT-llama = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)
Readme format: kyujinpy/KoT-platypus2-7B
- Downloads last month
- 4,275
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.