Edit model card

cl_ct_custom_model

This model is a fine-tuned version of bioformers/bioformer-16L on the (https://huggingface.co/datasets/tner/bionlp2004) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2590
  • F1: 0.7609
  • Precision: 0.7112
  • Recall: 0.8181
  • Accuracy: 0.9229

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.4568 0.9971 259 0.2146 0.8139 0.7920 0.8370 0.9326
0.2115 1.9981 519 0.1907 0.8349 0.8125 0.8586 0.9379
0.1802 2.9990 779 0.1912 0.8407 0.8178 0.8650 0.9394
0.164 4.0 1039 0.1869 0.8449 0.8255 0.8652 0.9401
0.1518 4.9971 1298 0.1819 0.8525 0.8348 0.8710 0.9428
0.1424 5.9981 1558 0.1842 0.8506 0.8351 0.8666 0.9422
0.134 6.9990 1818 0.1869 0.8539 0.8373 0.8712 0.9428
0.128 8.0 2078 0.1889 0.8540 0.8374 0.8712 0.9429
0.1241 8.9971 2337 0.1892 0.8559 0.8401 0.8724 0.9432
0.1199 9.9711 2590 0.1899 0.8552 0.8392 0.8718 0.9431

Eval Classification report

Class Precision Recall F1-Score Support
DNA 0.78 0.84 0.81 2494
RNA 0.83 0.89 0.86 238
Cell Line 0.81 0.85 0.83 1050
Cell Type 0.74 0.79 0.77 775
Protein 0.88 0.90 0.89 6196
Micro Avg 0.84 0.87 0.86 10753
Macro Avg 0.81 0.86 0.83 10753
Weighted Avg 0.84 0.87 0.86 10753

Test Results

Class Precision Recall F1-Score Support
DNA 0.74 0.79 0.76 2210
RNA 0.73 0.76 0.75 287
Cell Line 0.50 0.76 0.61 1057
Cell Type 0.75 0.68 0.71 2761
Protein 0.72 0.87 0.79 10082
Micro Avg 0.71 0.82 0.76 16397
Macro Avg 0.69 0.77 0.72 16397
Weighted Avg 0.72 0.82 0.76 16397

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
41.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Mardiyyah/bioformer-ner-model

Finetuned
(1)
this model

Dataset used to train Mardiyyah/bioformer-ner-model