metadata
license: apache-2.0
base_model: distilbert-base-uncased-finetuned-sst-2-english
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: finetuning-SentimentAnalysis-model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9025229357798165
- name: F1
type: f1
value: 0.9023551952126083
finetuning-SentimentAnalysis-model
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3755
- Accuracy: 0.9025
- F1: 0.9024
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.0575 | 1.0 | 1053 | 0.2953 | 0.9071 | 0.9070 |
0.0328 | 2.0 | 2106 | 0.3755 | 0.9025 | 0.9024 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3