MagpieLM
Collection
Aligning LMs with Fully Open Recipe (data+training configs+logs)
β’
9 items
β’
Updated
β’
15
Project Web: https://magpie-align.github.io/
Arxiv Technical Report: https://arxiv.org/abs/2406.08464
Codes: https://github.com/magpie-align/magpie
Model full name: Llama3.1-MagpieLM-4B-SFT-v0.1
This model is a fine-tuned version of nvidia/Llama-3.1-Minitron-4B-Width-Base on Magpie-Align/MagpieLM-SFT-Data-v0.1 dataset.
This is the intermediate checkpoint for fine-tuning Magpie-Align/MagpieLM-4B-Chat-v0.1.
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1026 | 0.0038 | 1 | 1.1547 |
0.6994 | 0.2015 | 53 | 0.7142 |
0.6181 | 0.4030 | 106 | 0.6375 |
0.5967 | 0.6045 | 159 | 0.6134 |
0.5793 | 0.8060 | 212 | 0.6004 |
0.5736 | 1.0075 | 265 | 0.5914 |
0.5411 | 1.1938 | 318 | 0.5883 |
0.5402 | 1.3953 | 371 | 0.5864 |
0.5423 | 1.5968 | 424 | 0.5856 |
0.5408 | 1.7983 | 477 | 0.5854 |
axolotl version: 0.4.1
base_model: nvidia/Llama-3.1-Minitron-4B-Width-Base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: llama3
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Magpie-Align/MagpieLM-SFT-Data-v0.1
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/MagpieLM-4B-SFT-v0.1
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama3.1-MagpieLM-4B-SFT-v0.1
wandb_log_model:
hub_model_id: Magpie-Align/MagpieLM-4B-SFT-v0.1
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
Base model
nvidia/Llama-3.1-Minitron-4B-Width-Base