metadata
language:
- en
license: apache-2.0
tags:
- conversational
datasets:
- Intel/orca_dpo_pairs
- Locutusque/Hercules-v3.0
inference:
parameters:
do_sample: true
temperature: 0.8
top_p: 0.95
top_k: 40
min_new_tokens: 2
max_new_tokens: 250
repetition_penalty: 1.1
widget:
- text: Hello who are you?
example_title: Identity
- text: What can you do?
example_title: Capabilities
- text: Create a fastapi endpoint to retrieve the weather given a zip code.
example_title: Coding
model-index:
- name: NeuralReyna-Mini-1.8B-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 37.8
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 60.51
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.04
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.75
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.93
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.07
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
name: Open LLM Leaderboard
NeuralReyna-Mini-1.8B-v0.2
Description
Taken aloobun/Reyna-Mini-1.8B-v0.2 and further fine-tuned it using DPO using the Intel/orca_dpo_pairs dataset.
This model has capabilities in coding, math, science, roleplay, and function calling.
This model was trained on OpenAI's ChatML prompt format.
Evaluation
GPT4ALL:
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_challenge | 1 | none | 0 | acc | 0.3208 | ± | 0.0136 |
none | 0 | acc_norm | 0.3336 | ± | 0.0138 | ||
arc_easy | 1 | none | 0 | acc | 0.6035 | ± | 0.0100 |
none | 0 | acc_norm | 0.5833 | ± | 0.0101 | ||
boolq | 2 | none | 0 | acc | 0.6526 | ± | 0.0083 |
hellaswag | 1 | none | 0 | acc | 0.4556 | ± | 0.0050 |
none | 0 | acc_norm | 0.6076 | ± | 0.0049 | ||
openbookqa | 1 | none | 0 | acc | 0.2600 | ± | 0.0196 |
none | 0 | acc_norm | 0.3460 | ± | 0.0213 | ||
piqa | 1 | none | 0 | acc | 0.7236 | ± | 0.0104 |
none | 0 | acc_norm | 0.7307 | ± | 0.0104 | ||
winogrande | 1 | none | 0 | acc | 0.6062 | ± | 0.0137 |
Disclaimer
This model may have overfitted to the DPO training data, and may not perform well.
Contributions
Thanks to @aloobun and @Locutusque for their contributions to this model.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 44.85 |
AI2 Reasoning Challenge (25-Shot) | 37.80 |
HellaSwag (10-Shot) | 60.51 |
MMLU (5-Shot) | 45.04 |
TruthfulQA (0-shot) | 37.75 |
Winogrande (5-shot) | 60.93 |
GSM8k (5-shot) | 27.07 |