metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- LunaticPython161/CyberWitch-7B
base_model:
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- LunaticPython161/CyberWitch-7B
Lily-MoE-2x7b
Lily-MoE-2x7b is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
🧩 Configuration
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
gate_mode: hidden # one of "hidden", "cheap_embed", or "random"
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
experts:
- source_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- "code"
- "programming"
- source_model: LunaticPython161/CyberWitch-7B
positive_prompts:
- "solve"
- "count"
- "math"
- "mathematics"
- "algorithm"
- "cypher"
- "cybersecurity"
- "penetration testing"
- "red team"
- "blue team"
- "hacking"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "LunaticPython161/Lily-MoE-2x7b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])