Phi0503HMA7 / README.md
Litzy619's picture
End of training
acd357a verified
---
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi0503HMA7
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0740
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.7716 | 0.09 | 10 | 1.5978 |
| 0.6746 | 0.18 | 20 | 0.3112 |
| 0.2767 | 0.27 | 30 | 0.2928 |
| 0.2464 | 0.36 | 40 | 0.2414 |
| 0.2371 | 0.45 | 50 | 0.2208 |
| 0.2186 | 0.54 | 60 | 0.1812 |
| 0.1417 | 0.63 | 70 | 0.1198 |
| 0.1133 | 0.73 | 80 | 0.0939 |
| 0.0903 | 0.82 | 90 | 0.0932 |
| 0.0878 | 0.91 | 100 | 0.0790 |
| 0.0861 | 1.0 | 110 | 0.0991 |
| 0.0751 | 1.09 | 120 | 0.0725 |
| 0.108 | 1.18 | 130 | 0.0977 |
| 0.0877 | 1.27 | 140 | 0.0792 |
| 0.0675 | 1.36 | 150 | 0.0733 |
| 0.0766 | 1.45 | 160 | 0.0715 |
| 0.0681 | 1.54 | 170 | 0.0708 |
| 0.0656 | 1.63 | 180 | 0.0665 |
| 0.0578 | 1.72 | 190 | 0.0660 |
| 0.0668 | 1.81 | 200 | 0.0655 |
| 0.0551 | 1.9 | 210 | 0.0673 |
| 0.0588 | 1.99 | 220 | 0.0670 |
| 0.0376 | 2.08 | 230 | 0.0686 |
| 0.0363 | 2.18 | 240 | 0.0813 |
| 0.0292 | 2.27 | 250 | 0.0874 |
| 0.0316 | 2.36 | 260 | 0.0777 |
| 0.0352 | 2.45 | 270 | 0.0751 |
| 0.0267 | 2.54 | 280 | 0.0772 |
| 0.0284 | 2.63 | 290 | 0.0779 |
| 0.0352 | 2.72 | 300 | 0.0759 |
| 0.037 | 2.81 | 310 | 0.0748 |
| 0.031 | 2.9 | 320 | 0.0740 |
| 0.0313 | 2.99 | 330 | 0.0740 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0