O0503HMA1
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0360
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5401 | 0.09 | 10 | 0.2119 |
0.1797 | 0.18 | 20 | 0.1526 |
0.1498 | 0.27 | 30 | 0.1660 |
0.1551 | 0.36 | 40 | 0.1517 |
0.1514 | 0.45 | 50 | 0.1520 |
0.1539 | 0.54 | 60 | 0.1495 |
0.1501 | 0.63 | 70 | 0.1485 |
0.1484 | 0.73 | 80 | 0.1588 |
0.1476 | 0.82 | 90 | 0.1496 |
0.1475 | 0.91 | 100 | 0.1485 |
0.1483 | 1.0 | 110 | 0.1484 |
0.1418 | 1.09 | 120 | 0.1445 |
0.1268 | 1.18 | 130 | 0.1245 |
0.1042 | 1.27 | 140 | 0.0822 |
0.1074 | 1.36 | 150 | 0.0770 |
0.0729 | 1.45 | 160 | 0.0743 |
0.0711 | 1.54 | 170 | 0.0752 |
0.0769 | 1.63 | 180 | 0.0727 |
0.0779 | 1.72 | 190 | 0.0730 |
0.0724 | 1.81 | 200 | 0.0769 |
0.0744 | 1.9 | 210 | 0.0758 |
0.0727 | 1.99 | 220 | 0.0701 |
0.0707 | 2.08 | 230 | 0.0722 |
0.0685 | 2.18 | 240 | 0.0674 |
0.0606 | 2.27 | 250 | 0.0600 |
0.0585 | 2.36 | 260 | 0.0536 |
0.0489 | 2.45 | 270 | 0.0517 |
0.0445 | 2.54 | 280 | 0.0469 |
0.0428 | 2.63 | 290 | 0.0423 |
0.0413 | 2.72 | 300 | 0.0382 |
0.0388 | 2.81 | 310 | 0.0361 |
0.038 | 2.9 | 320 | 0.0363 |
0.038 | 2.99 | 330 | 0.0360 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0503HMA1
Base model
allenai/OLMo-1B