O0430HMA9
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0218
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.681 | 0.09 | 10 | 0.1921 |
0.1704 | 0.18 | 20 | 0.1533 |
0.1507 | 0.27 | 30 | 0.1619 |
0.1544 | 0.36 | 40 | 0.1492 |
0.1502 | 0.45 | 50 | 0.1504 |
0.1515 | 0.54 | 60 | 0.1479 |
0.1509 | 0.63 | 70 | 0.1470 |
0.1492 | 0.73 | 80 | 0.1537 |
0.1475 | 0.82 | 90 | 0.1494 |
0.1482 | 0.91 | 100 | 0.1473 |
0.1615 | 1.0 | 110 | 0.1788 |
0.316 | 1.09 | 120 | 0.3899 |
0.1295 | 1.18 | 130 | 0.0776 |
0.0766 | 1.27 | 140 | 0.0779 |
0.0675 | 1.36 | 150 | 0.0348 |
0.1236 | 1.45 | 160 | 0.0590 |
0.1126 | 1.54 | 170 | 0.0556 |
0.0687 | 1.63 | 180 | 0.0329 |
0.142 | 1.72 | 190 | 0.8702 |
0.1355 | 1.81 | 200 | 0.1972 |
0.0663 | 1.9 | 210 | 0.0354 |
0.025 | 1.99 | 220 | 0.0269 |
0.0297 | 2.08 | 230 | 0.0285 |
0.0251 | 2.18 | 240 | 0.0250 |
0.0203 | 2.27 | 250 | 0.0225 |
0.0262 | 2.36 | 260 | 0.0242 |
0.0211 | 2.45 | 270 | 0.0231 |
0.0192 | 2.54 | 280 | 0.0225 |
0.0239 | 2.63 | 290 | 0.0222 |
0.0231 | 2.72 | 300 | 0.0221 |
0.0214 | 2.81 | 310 | 0.0219 |
0.0222 | 2.9 | 320 | 0.0218 |
0.0248 | 2.99 | 330 | 0.0218 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA9
Base model
allenai/OLMo-1B