O0430HMA22
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0116
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4451 | 0.09 | 10 | 0.1875 |
0.166 | 0.18 | 20 | 0.1559 |
0.1487 | 0.27 | 30 | 0.1614 |
0.1558 | 0.36 | 40 | 0.1541 |
0.1509 | 0.45 | 50 | 0.1503 |
0.154 | 0.54 | 60 | 0.1506 |
0.1515 | 0.63 | 70 | 0.1472 |
0.1486 | 0.73 | 80 | 0.1571 |
0.1465 | 0.82 | 90 | 0.1489 |
0.1486 | 0.91 | 100 | 0.1494 |
0.1512 | 1.0 | 110 | 0.1504 |
0.1451 | 1.09 | 120 | 0.1458 |
0.1363 | 1.18 | 130 | 0.1194 |
0.4695 | 1.27 | 140 | 0.0859 |
0.2213 | 1.36 | 150 | 0.1021 |
0.1433 | 1.45 | 160 | 0.1743 |
0.0896 | 1.54 | 170 | 0.0789 |
0.0705 | 1.63 | 180 | 0.0677 |
0.0746 | 1.72 | 190 | 0.0697 |
0.0572 | 1.81 | 200 | 0.0534 |
0.0524 | 1.9 | 210 | 0.0385 |
0.0511 | 1.99 | 220 | 0.0436 |
0.0401 | 2.08 | 230 | 0.0288 |
0.0262 | 2.18 | 240 | 0.0192 |
0.0223 | 2.27 | 250 | 0.0179 |
0.0254 | 2.36 | 260 | 0.0184 |
0.0184 | 2.45 | 270 | 0.0169 |
0.0124 | 2.54 | 280 | 0.0137 |
0.0199 | 2.63 | 290 | 0.0124 |
0.0158 | 2.72 | 300 | 0.0128 |
0.0124 | 2.81 | 310 | 0.0115 |
0.0159 | 2.9 | 320 | 0.0125 |
0.0144 | 2.99 | 330 | 0.0116 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA22
Base model
allenai/OLMo-1B